

Comune di Monte Cremasco

Provincia di Cremona

Via Roma 12 Tel. 0373.791121 www.comune.montecremasco.cr.it

Progettisti
Arch. LUIGI MEANTI – Ripalta Cr.sca
Ing. FULVIO MARAZZI – Crema

INTERVENTI FINALIZZATI ALL'AVVIO DI PROCESSI DI RIGENERAZIONE URBANA

Finanziamento mediante Decreto Regionale nr. 2804 del 03.03.2022

RISTRUTTURAZIONE AREA DELLE FESTE – via Ugo Foscolo

PROGETTO DEFINITIVO-ESECUTIVO

Ai sensi dell'art. 23 comma 5 del D. Lgs. 50-2016

Allegato Ro7

RELAZIONE TECNICA SUL CONTENIMENTO DEL CONSUMO ENERGETICO E IMPIANTI MECCANICI

Via Santa Chiara, 11 - 26013 Crema - (CR) Tel. 0373/631150- fax 0373631154 Cell. 3355735199

E-mail: <u>f.mara@libero.it</u> gatuengineering@gmail.com

Progetto definitivo-esecutivo per:

IMPIANTO MECCANICO

RISTRUTTURAZIONE AREA FESTE DI VIA UGO FOSCOLO

ELENCO DOCUMENTI DI PROGETTO

Elaborato n° 1 - RELAZIONE TECNICA

Elaborato nº 2 - Tavola di Progetto

AREA FESTE

	Data di emissione :	ottobre 2018
	Revisione:	0
Elaborato nº		

1 RELAZIONE TECNICA SPECIALISTICA IMPIANTI MECCANICI

Progetto n°
01/2022 Committente : AMMINISTRAZIONE

COMUNALE DI MONTE CREMASCO (CR)

<u>1.</u>	DESCRIZIONE GENERALE 2	
	1.1 <u>PREMESSA</u>	
2	CENNI LEGISLATIVI E NORMATIVI	2
3	CALCOLO DEI CARICHI TERMICI INVERNALI	4
4	DATI CLIMATICI DELLA LOCALITÀ	4
	4.1. CONDIZIONI TERMOIGROMETRICHE INTERNE	
	4.2. <u>TEMPERATURE FLUIDI UTILIZZATI</u>	
	4.3. <u>VERIFICHE DI LEGGE E CARATTERISTICHE TECNICHE DELL'IMPIANTO</u>	
	4.4. CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI	
	4.5. CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI	
	4.6. CARATTERISTICHE TERMICHE DEI PONTI TERMICI	
	4.7. FABBISOGNO DI POTENZA TERMICA INVERNALE	
5.	IMPIANTO DI RISCALDAMENTO	62
6.	5.1.1 CENTRALE TECNOLOGICA. 5.1.2 IMPIANTO DI VENTILAZIONE MECCANICA CONTROLLATA 5.1.3 IMPIANTO DI RISCALDAMENTO PALESTRA 5.2 APPARECCHIATURE IMPIANTO DI CLIMATIZZAZIONE 5.3 UNITA' TERMINALI IMPIANTO DI CLIMATIZZAZIONE 5.3.1 PANNELLI RADIANTI A PAVIMENTO 5.4 DIMENSIONAMENTO E LOGICA DI FUNZIONAMENTO DELL'IMPIANTO DI CLIMATIZZAZIONE 5.4.1 DIMENSIONAMENTO DELL'IMPIANTO 5.4.2 LOGICA DI FUNZIONAMENTO DELL'IMPIANTO VERIFICHE E PROVE PRELIMINARI	94
7.	FABBISOGNO DI ENERGIA UTILE INVERNALE	97
8.	RETI DI DISTRIBUZIONE IMPIANTO DI CLIMATIZZAZIONE	133
	8.1. <u>DIMENSIONAMENTO RETI IMPIANTO DI CLIMATIZZAZIONE</u>	
	8.2. <u>DIMENSIONAMENTO TUBAZIONI IMPIANTO DI CLIMATIZZAZIONE</u>	
	8.2.1 PERDITE DI CARICO CONTINUE	
	8.2.2 TABELLE PERDITE DI CARICO CONTINUE	
	8.2.3 <u>PERDITE DI CARICO LOCALIZZATE</u>	

8.2.4 TABELLE PERDITE DI CARICO LOCALIZZATE

8.3. <u>DIMENSIONAMENTO CANALIZZAZIONI IMPIANTO DI CLIMATIZZAZIONE</u>

- 8.3.1 PERDITE DI CARICO CONTINUE
- 8.3.3 PERDITE DI CARICO LOCALIZZATE
- 8.3.4 TABELLE PERDITE DI CARICO LOCALIZZATE

9. <u>IMPIANTO SCARICO</u>

157

9.1 RETE DI SCARICO ACQUE USATE DI PROCESSO

1. DESCRIZIONE GENERALE

1.1 PREMESSA

La presente relazione è relativa agli impianti termici dell'AREA FESTE di Via Ugo Foscolo nel comune di Monte Cremasco (CR).

L'intervento prevede la RISTRUTTTURAZIONE di un volume esistente , che viene adibito ad area di pubblico spettacolo. Realizzato all'interno di un esistente capannone prefabbricato, subirà una serie di interventi edilizi, destinati alla trasformazione dell'esistente in un attrezzata area per gli eventi ludici autorizzati dall'amministrazione. a , la cui edificazione è prevista vicina alla biblioteca pubblica.

Gli interventi impiantistici di progetto possono essere così riassunti:

- Realizzazione dell'impianto di riscaldamento e raffrescamento della sala e dei locali accessorio mediante installazione di:
 - 1- impianto a tutta aria per la sala centrale, alimentato da pompa adi calore tipo a Roof-top con ricircolo parziale di aria. L'impianto di immissione sarà con canali microforati circolari a parete, mentre la ripresa sarà tramite griglia a pavimento collegata con la sezione di aspirazione del Roof-top, tramite canale in lamiera zincata coibentata.
 - 2- Impianto ad espansione diretta del tipo a portata variabile (VRF) con unità esterna di tipo trial e unità interne a casetta a soffitto di opportuna potenzialità.
- Realizzazione impianto di produzione e distribuzione dell'acqua calda mediante pomp adi calore con accumulo da 200 lt

2. CENNI LEGISLATIVI E NORMATIVI

Gli impianti devono essere realizzati a regola d'arte, giusta prescrizione della Legge 1º marzo 1968, n. 186. Le caratteristiche degli impianti stessi, nonché dei loro componenti, devono corrispondere alle norme di legge e di regolamento vigenti alla data di presentazione dell'offerta ed in particolare essere conformi:

- alle Norme UNI:
- Legge n. 373 del 30.04.1976 e relativo Decreto Ministeriale del 07.10.1991;
- D.G.R. 26/06/2007 N. 8/5018, E S.M.I.;
- Norme ISPESL;
- Legge 46/90 del 05/03/1990 come modificata dal DM n. 37 del 22/01/2008;
- Decreto Legislativo 81/2008 riguardanti il miglioramento della sicurezza e della salute dei lavoratori sul luogo di lavoro;
- Prescrizioni emanate dal locale comando dei Vigili del Fuoco.
- alle prescrizioni di Autorità Locali, comprese quelle dei VV.F.;
 In particolare si ricordano le seguenti leggi e le principali Norme UNI (elenco non esaustivo):

REGOLA	DESCRIZIONE				
Legge 9.1.91, n. 10 e s.m.i	Norme per l'attuazione del piano energetico nazionale in materia di uso razionale dell'energia, di risparmio energetico e di sviluppo delle fonti rinnovabili di energia.				
D.P.R. 26.8.93, n. 412	Regolamento recante norme per la progettazione, l'installazione, l'esercizio e la manutenzione degli impianti termici degli edifici ai fini del contenimento dei consumi di energia, in attuazione all'articolo 4 comma 4 della Legge 10/91.				
Direttiva 2002/91/CE	Direttiva 2002/91/CE del parlamento europeo e del consiglio del dicembre 2002 sul rendimento energetico nell'edilizia.				
D.Lgs. 19.8.2005, n. 192	Attuazione della direttiva 2002/91/CE relativa al rendimento energetico nell'edilizia.				
D.Lgs. 29.12.2006, n. 311	Disposizioni correttive ed integrative al decreto legislativo 19 agosto 2005, n. 192, recante attuazione della direttiva 2002/91/CE, relativa al rendimento energetico nell'edilizia.				
D.Lgs. 30.5.2008, n. 115	Attuazione della direttiva 2006/32/CE relativa all'efficienza degli usi finali dell'energia e i servizi energetici e abrogazione della direttiva 93/76/CEE.				

Dott. Ing. Fulvio Marazzi

1	_	_
7	7/	7
L	L	L

	Dott. Ing. I divio iviarazzi
D.Lgs. 3.3.2011, n. 28	Attuazione della direttiva 2009/28/CE sulla promozione dell'uso dell'energia da fonti rinnovabili, recante modifica e successiva abrogazione delle direttive 2001/77/CE e 2003/30/CE.
D.P.R. 2.4.2009, n. 59	Regolamento di attuazione dell'articolo 4, comma 1, lettere a) e b),
	del decreto legislativo 19 agosto 2005, n. 192, concernente attuazione
	della direttiva 2002/91/CE sul rendimento energetico in edilizia.
D.M. 26.6.2009	Linee guida nazionali per la certificazione energetica degli edifici.
Decreto Legge 4.6.2013 n.63	Disposizioni urgenti per il recepimento della Direttiva 2010/31/UE del
	Parlamento europeo e del Consiglio del 19 maggio 2010, sulla
	prestazione energetica nell'edilizia per la definizione delle procedure
	d'infrazione avviate dalla Commissione europea, nonché altre
	disposizioni in materia di coesione sociale.
Legge 3.8.2013, n. 90	Conversione in legge, con modificazioni, del decreto-legge 4 giugno
	2013, n. 63, recante disposizioni urgenti per il recepimento della
	Direttiva 2010/31/UE del Parlamento europeo e del Consiglio del 19
	maggio 2010, sulla prestazione energetica nell'edilizia per la
	definizione delle procedure d'infrazione avviate dalla Commissione
	europea, nonché' altre disposizioni in materia di coesione sociale.
D.G.R. regione Lombardia 2456 del 08/03/2017	Integrazione delle disposizioni per l'efficienza energetica degli edifici
	approvate con decreto n. 176 del 12.1.2017 e riapprovazione
	complessiva delle disposizioni relative all'efficienza energetica degli
	edifici e all'attestato di prestazione energetica
D.D.U.O. regione Lombardia 18576 del 19/12/2019	AGGIORNAMENTO DELLE DISPOSIZIONI PER L'EFFICIENZA
	ENERGETICA DEGLI EDIFICI APPROVATE CON DECRETO n. 2456 DEL
	8.3.2017

NORME TECNICHE NORMA	DESCRIZIONE
UNI/TS 11300-1:2014	Prestazioni energetiche degli edifici - Parte 1: Determinazione del fabbisogno di energia termica dell'edificio per la climatizzazione estiva ed invernale.
UNI/TS 11300-2:2014	Prestazioni energetiche degli edifici - Parte 2: Determinazione del fabbisogno di energia primaria e dei rendimenti per la climatizzazione invernale e per la produzione di acqua calda sanitaria, per la ventilazione e per l'illuminazione.
UNI/TS 11300-3:2016	Prestazioni energetiche degli edifici - Parte 3: Determinazione del fabbisogno di energia primaria e dei rendimenti per la climatizzazione estiva.
UNI/TS 11300-4:2016	Prestazioni energetiche degli edifici - Parte 4: Utilizzo di energie rinnovabili e di altri metodi di generazione per la climatizzazione invernale e per la produzione di acqua calda sanitaria.
UNI/TS 11300-5:2016	"Prestazioni energetiche degli edifici – Parte 5: Calcolo dell'energia primaria e della quota di energia da fonti rinnovabili
UNI/TS 11300-6 2016	Prestazioni energetiche degli edifici – Parte 6: Determinazione del fabbisogno di energia per ascensori, scale mobili e marciapiedi mobili
UNI/TR 11552	Abaco delle strutture costituenti l'involucro opaco degli edifici - Parametri termofisici.
UNI 10339	Impianti aeraulici a fini di benessere - Generalità, classificazione e requisiti - Regole per la richiesta d'offerta, l'offerta, l'ordine e la fornitura.
UNI 10349-1 -2016	Riscaldamento e raffrescamento degli edifici - Dati climatici.
UNI 10351	Materiali da costruzione - Conduttività termica e permeabilità al vapore.
UNI 10355	Murature e solai - Valori della resistenza termica e metodo di calcolo.
UNI 10356	Materiali e prodotti per edilizia - Proprietà igrometriche - Valori tabulati di progetto e procedimenti per la determinazione dei valori termici dichiarati e di progetto.
UNI EN 12831	Impianti di riscaldamento negli edifici - Metodo di calcolo del carico termico di progetto.
UNI EN 15193	Prestazione energetica degli edifici - Requisiti energetici per illuminazione.
UNI EN 15316-4-8	Impianti di riscaldamento degli edifici - Metodo per il calcolo dei requisiti energetici e dei rendimenti dell'impianto - Parte 4-8: Sistemi di generazione per il riscaldamento degli ambienti, riscaldamento ad aria e sistemi di riscaldamento radianti
UNI EN ISO 6946	Componenti ed elementi per l'edilizia - Resistenza termica e trasmittanza termica - Metodo di calcolo.
UNI EN ISO 10077-1	Prestazione termica di finestre, porte e chiusure oscuranti - Calcolo della trasmittanza termica - Parte 1: Generalità.
UNI EN ISO 10211	Ponti termici in edilizia. Flussi termici e temperature superficiali. Calcoli dettagliati.

15	$\overline{}$
$I \cap Y$	\cap
ιι	L

UNI EN ISO 10456	
0NI EN 130 10430	Materiali e prodotti per l'edilizia - Proprietà igrometriche - Valori tabulati di progetto e procedimenti per la determinazione dei valori
	termici dichiarati e di progetto.
UNI EN ISO 13370	Prestazione termica degli edifici - Trasferimento di calore attraverso il
	terreno - Metodi di calcolo.
UNI EN ISO 13786	Prestazione termica dei componenti per edilizia - Caratteristiche
	termiche dinamiche - Metodi di calcolo.
EC 1-2011 UNI EN ISO 13786	Errata corrige 1 del 15.3.2011 alla UNI EN ISO 13786:2008.
UNI EN ISO 13788	Prestazione igrotermica dei componenti e degli elementi per edilizia -
	Temperatura superficiale interna per evitare l'umidità superficiale
	critica e la condensazione interstiziale - Metodi di calcolo
UNI EN ISO 13789	Prestazione termica degli edifici - Coefficienti di trasferimento del
	calore per trasmissione e ventilazione - Metodo di calcolo.
UNI EN ISO 13790	Prestazione energetica degli edifici - Calcolo del fabbisogno di energia
	per il riscaldamento e il raffrescamento.
UNI EN ISO 14683	Ponti termici in edilizia - Coefficiente di trasmissione termica lineica -
	Metodi semplificati e valori di riferimento.
Raccomandazione CTI 14	Prestazioni energetiche degli edifici - Determinazione della prestazione
	energetica per la classificazione dell'edificio.
UNI 10339	Impianti aeraulici ai fini del benessere

km

CALCOLO DEI CARICHI TERMICI INVERNALI

Il calcolo dei carichi termici invernali è stato condotto sulla base delle indicazioni fornite dal committente relativamente ai dati geometrici, delle strutture edili, all'orientamento dell'edificio ed all'utilizzo dei locali.

Il calcolo invernale è stato effettuato rispettando le normative e le leggi di riferimento per il contenimento dei consumi energetici, e più propriamente della D.D.U.O. 19/12/2019 - N. 18576, e S.M.I., considerando il recupero di un volume esistente dotato di nuovi impianti.

La determinazione dei carichi termici sopra indicati è stata effettuata mediante il software EDILCLIMA EC700 versione 11.22.19.

4. DATI CLIMATICI DELLA LOCALITÀ

Caratteristiche geografiche

Monte Cremasco Località Provincia Cremona

84

Altitudine s.l.m. m 9° 34'

45° 22' Latitudine nord Longitudine est Gradi giorno 2557

Zona climatica Ε

Località di riferimento

per la temperatura **CAPRALBA** CAPRALBA per l'irradiazione per il vento **CAPRALBA**

Caratteristiche del vento

Regione di vento: Α Direzione prevalente Est > 40 Distanza dal mare

Velocità media del vento 0,8 m/s Velocità massima del vento 1,6 m/s

Dati invernali

°C Temperatura esterna di progetto -6,0 Stagione di riscaldamento convenzionale dal 15 ottobre al 15 aprile

Dati estivi

°C Temperatura esterna bulbo asciutto 32,40 °C Temperatura esterna bulbo umido 22,60 Umidità relativa 44,0 % Escursione termica giornaliera 12

Temperature esterne medie mensili

Descrizione	u.m.	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Temperatura	°C	1,9	3,2	7,7	12,4	17,5	21,9	22,7	21,7	17,7	13,0	6,1	3,3

Irradiazione solare media mensile

Esposizione	u.m.	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Nord	MJ/m ²	1,5	2,2	3,4	4,8	7,3	9,3	8,7	6,5	4,2	2,4	1,5	1,0
Nord-Est	MJ/m ²	1,6	2,9	5,4	7,3	9,8	12,2	11,5	9,3	6,4	3,0	1,7	1,1
Est	MJ/m ²	3,4	6,0	9,4	10,1	11,9	14,5	13,7	12,0	9,5	4,8	3,4	3,0
Sud-Est	MJ/m ²	6,0	9,2	12,0	10,7	11,2	12,6	12,3	12,0	10,9	6,5	5,6	5,8
Sud	MJ/m ²	7,7	11,0	12,7	9,7	9,2	9,7	9,9	10,3	10,7	7,3	7,0	7,6
Sud-Ovest	MJ/m ²	6,0	9,2	12,0	10,7	11,2	12,6	12,3	12,0	10,9	6,5	5,6	5,8
Ovest	MJ/m ²	3,4	6,0	9,4	10,1	11,9	14,5	13,7	12,0	9,5	4,8	3,4	3,0
Nord-Ovest	MJ/m ²	1,6	2,9	5,4	7,3	9,8	12,2	11,5	9,3	6,4	3,0	1,7	1,1
Orizzontale	MJ/m ²	2,1	2,9	4,3	5,9	7,8	7,8	8,4	7,5	5,7	3,4	2,1	1,4

Irradianza sul piano orizzontale nel mese di massima insolazione: 259 W/m2

4.1. <u>CONDIZIONI TERMOIGROMETRICHE INTERNE INVERNO</u>

o Sala polifunzionale 20° C \pm 1°C U.R. \leq 55 %

o Locali accessori 20C \pm 1°C U.R. \leq 55 %

4.2. <u>TEMPERATURE FLUIDI UTILIZZATI</u>

<u>Inverno</u>

o Sala _Aria 30/35°C

o Locali accessori _ Aria 30/35°C

o Temperatura pozzo di presa

o Inverno -5°C

Estate

o Sala _Aria 17/20°C

o Locali accessori _ Aria 17/20°C

o Temperatura pozzo di presa

o Estate 32,40 °C

vene di seguito riportata la relazione tecnica ex L.10-91 con le verifiche

4.3. VERIFICHE DI LEGGE E CARATTERISTICHE TECNICHE DELL'IMPIANTO

LEGGE 9 gennaio 1991, n. 10 RELAZIONE TECNICA

DDUO 12 Gennaio 2017 n. 176

DDUO 8 Marzo 2017 n. 2456

DDUO 18 Dicembre 2019 n. 18546

COMMITTENTE : Comune di Monte Cremasco

EDIFICIO : **Edificio polifunzionale**

INDIRIZZO: Via Ugo Foscolo - 26010 Monte Cremasco (CR)

COMUNE : Monte Cremasco

INTERVENTO : Ristrutturazione area Feste di via Ugo Foscolo

Rif.: 1532_Monte_polifunzionale_f.E0001

Software di calcolo : Edilclima - EC700 - versione 11

MARAZZI ING. FULVIO - STUDIO DI INGEGNERIA VIA SANTA CHIARA, 11 - 26013 CREMA (CR)

RELAZIONE TECNICA DI CUI AL PUNTO 4.8 DELL'ALLEGATO 1 DEL DECRETO ATTUATIVO DELLA DGR 3868 DEL 17.7.2015

Nuove costruzioni, ristrutturazioni importanti di primo livello, edifici ad energia quasi zero

Un edificio esistente è sottoposto a ristrutturazione importante di primo livello quando l'intervento ricade nelle tipologie indicate nell'allegato A del decreto attuativo della DGR 3868 del 17.7.2015.

1. INFORM	AZIONI GENERALI			
Comune di	Monte Cremasco		Provincia	CR
Ristrutturazi	a realizzazione di (specificare il one area Feste di via Ugo Fo iscaldamento)	tipo di opere): oscolo (recupero di volume esiste	ente con n	uovo
fini dell'	articolo 5, comma 15, del decr	cra tra quelli di proprietà pubblica o a reto del Presidente della Repubblica a) e dell'allegato I, comma 14 del de	26 agosto	1993, n. 412
	care l'ubicazione o, in alternativ censimento al Nuovo Catasto 1	va, indicare che è da edificare nel ter Ferritoriale):	reno in cui	si riportano
Via Ugo Fosc	olo - 26010 Monte Cremasco	o (CR)		
Richiesta pern	nesso di costruire	d	el Ottobi	e 2022
Permesso di c	ostruire/DIA/SCIA/CIL o CIA	d	el Ottobi	re 2022
Variante perm	esso di costruire/DIA/SCIA/CIL	o CIA d	el Ottobi	re 2022
decreto del I appartenenti a	Presidente della Repubblica 2 a categorie differenti, specificare	o di edifici) in base alla categoria d 26 agosto 1993, n. 412; per edi e le diverse categorie): , associative e simili: quali cinema e t	fici costitu	iti da parti
Numero delle	unità abitative 2			
Committente ((i)	Sindaco pro tempore del Comune di Monte Cremasco		
		Via Roma, 12 - 26010 Monte Cre	emasco (C	R)

Progettista dell'isolamento termico

Ing. Marazzi Fulvio

Albo: *Ingegneri* Pr.: *Cremona* N.iscr.: **941**

Progettista degli impianti termici

Ing. Marazzi Fulvio

Albo: Ingegneri Pr.: Cremona N.iscr.: 941

Direttore lavori dell'isolamento termico

Arch. Meanti Luigi

Albo: Architetti Pr.: Cremona N.iscr.: 453

Direttore lavori degli impianti termici

Ing. Marazzi Fulvio

Albo: Ingegneri Pr.: Cremona N.iscr.: 941

Certificatore energetico

Ing. Carelli Gianpaolo

Albo: Ingegneri Pr.: Cremona N.iscr.: 1026

2. FATTORI TIPOLOGICI DELL'EDIFICIO (O DEL COMPLESSO DI EDIFICI)

Gli elementi tipologici forniti, al solo scopo di supportare la presente relazione tecnica, sono i seguenti:

- [X] Piante di ciascun piano degli edifici con orientamento e indicazione d'uso prevalente dei singoli locali.
- [] Prospetti e sezioni degli edifici con evidenziazione dei sistemi di protezione solare.
- [] Elaborati grafici relativi ad eventuali sistemi solari passivi specificatamente progettati per favorire lo sfruttamento degli apporti solari.

3. PARAMETRI CLIMATICI DELLA LOCALITÀ

Gradi giorno (della zona d'insediamento, determinati in base al DPR 412/93)

2557 GG

Temperatura esterna minima di progetto (secondo UNI 5364 e successivi aggiornamenti)

-6,0 °C

Temperatura massima estiva di progetto dell'aria esterna secondo norma

32,4 °C

4. DATI TECNICI E COSTRUTTIVI DELL'EDIFICIO (O DEL COMPLESSO DI EDIFICI) E DELLE RELATIVE STRUTTURE

a) Condizionamento invernale

Descrizione	V [m³]	S [m²]	S/V [1/m]	Su [m²]	θ _{int} [°C]	Φint [%]
Sala polifunzionale	1025,17	713,00	0,70	218,47	20,0	65,0
Bar / Cucina	412,05	348,42	0,85	87,57	20,0	65,0
Edificio polifunzionale	1437,22	1061,42	0,74	306,04	20,0	65,0

Presenza sistema di contabilizzazione del calore:

[]

b) Condizionamento estivo

	[m³]	[m²]	S/V [1/m]	Su [m²]	θ _{int} [°C]	Фint [%]
Sala polifunzionale	1025,17	713,00	-	218,47	26,0	51,3
Bar / Cucina	329,28	269,04	-	73,48	26,0	51,3
Edificio polifunzionale	1354 45	982 04	_	291 95	26.0	51,3
Bar / Cucina Edificio polifunzionale	329,28 1354,45	269,04 982,04	-	73,48 291,95	26,0 26,0	

Presenza sistema di contabilizzazione del calore:

[]

- V Volume delle parti di edificio abitabili o agibili al lordo delle strutture che li delimitano
- S Superficie esterna che delimita il volume
- S/V Rapporto di forma dell'edificio
- Su Superficie utile dell'edificio
- θ_{int} Valore di progetto della temperatura interna
- φint Valore di progetto dell'umidità relativa interna

		e prescrizioni

Presenza di reti di teleriscaldamento/raffreddamento a meno di 1000 m:	[]				
Motivazione della soluzione prescelta:					
Livello di automazione per il controllo la regolazione e la gestione delle tecnologie degli impianti termici (BACS, minimo classe B secondo UNI EN 15232) Si tratta di edificio ad uso pubblico, è richiesto un BACS minimo di classe B se UNI EN 15232.					
Adoziono di matoriali ad olovata riflottanza colare per le conerture:	rı				
	[]				
Valore di riflettanza solare >0,00 >0,65 per coper					
Valore di riflettanza solare >0,00 >0,30 per coper	rture a falda				
Motivazione che hanno portato al non utilizzo dei materiali riflettenti: Non viene toccata la copertura					
Non viene toccata la copertura					
Adozione di tecnologie di climatizzazione passiva per le coperture:	[]				
Motivazione che hanno portato al non utilizzo:					
Non viene toccata la copertura					
Adozione di misuratori di energia (Energy Meter):	[]				
Descrizione delle principali caratteristiche:					
Adozione di sistemi di contabilizzazione diretta del calore, del freddo e dell'ACS:	[]				
Descrizione dei sistemi utilizzati o motivazioni che hanno portato al non utilizzo:					
Non necessario					
Utilizzazione di fonti di energia rinnovabili per la copertura dei consumi di calore, d per il raffrescamento secondo i principi minimi di integrazione, le modalità e le deco all'allegato 3, del decreto legislativo 3 marzo 2011, n. 28.					
Descrizione e percentuali di copertura:					
Copertura ACS 78,54 %-Copertura totale 55,2 % tramite Impianto Fotovoltai kWp e sistema di generazione ACS in pompa di calore	ico da 12				
Adozione sistemi di regolazione automatica della temperatura ambiente singoli locali o nelle zone termiche servite da impianti di climatizzazione invernale:	[]				
Adozione sistemi di compensazione climatica nella regolazione automatica della temperatura ambiente singoli locali o nelle zone termiche servite da impianti di climatizzazione invernale:	[X]				
Motivazioni che hanno portato al non utilizzo:					

Valutazione sull'efficacia dei sistemi schermanti delle superfici vetrate sia esterni che interni presenti:

Le finestre sono dotate vetrate con coefficiente g minimo di 0.5e efficaci per ridurre l'apporto di calore estivo dovuto all'irraggiamento solare

Descrizione e potenza degli impianti alimentati da fonti rinnovabili (specificare anche le caratteristiche e l'ubicazione (comune, indirizzo, foglio e particella catastale) di eventuali impianti per cui ci si avvale della possibilità prevista al punto 2 della DGR 2480 del 18.11.2019), allegando l'atto di assenso del legittimo proprietario o dell'avente titolo:

Installazione di impianto fotovoltaico da 12 kWp esposto a Ovest

5. DATI RELATIVI AGLI IMPIANTI

5.1 Impianti termici

Impianto tecnologico destinato ai servizi di climatizzazione invernale e/o estiva e/o produzione di acqua calda sanitaria, indipendentemente dal vettore energetico utilizzato.

a) Descrizione impianto

Tipologia

Impianto di riscaldamento con pompa di calore aria-aria, per sala polifunzionale. Sistema in pompa di calore ad espansione diretta per zona servizi (bar e cucina). Impianto ACS produzione separata con pompa di calore aria-acqua

Sistemi di generazione

Impianto di riscaldamento con pompa di calore aria-aria, impianto ad aria. Impianto produzione ACS con pompa di calore aria-acqua

Sistemi di termoregolazione

Centralina climatica con sonda esterna per la regolazione della temperatura di mandata in funzione della temperatura esterna. Cronotermostato di zona

Sistemi di contabilizzazione dell'energia termica

non necessario

Sistemi di distribuzione del vettore termico

Distribuzione generale a collettori tipo MODUL per ACS

Tubazioni di acqua calda ed aria coibentate secondo legge 10/91.

Sistemi di ventilazione forzata: tipologie

Impianto di ventilazione meccanica controllata di tipo canalizzato combinato con riscaldamento

Sistemi di accumulo termico: tipologie

Sistemi di produzione e di distribuzione dell'acqua calda sanitaria

Impianto ACS produzione separata con pompa di calore aria-acqua

Trattamento di condizionamento chimico per l'acqua, norma UNI 8065: []

Presenza di un filtro di sicurezza:

b) Specifiche dei generatori di energia

IIIStaliazione	e di dii co	illatore dei volu	ime di acqi	ua Calua Saliitalia:			LJ
Installazione	nstallazione di un contatore del volume di acqua di reintegro dell'impianto:						[]
Zona		ala polifunzio	nale				
Zona S	ala polif	unzionale		Quantità		1	
Servizio R	Riscaldan	nento		Fluido termo	ovettore	Aria	
Tipo di gene	ratore	Pompa di calo	ore	Combustibil	е	Energia	a elettrica
Marca – mod	dello	TIPO CLIVE	T CKN-XI	HE2i 10.1			
Tipo sorgent	te fredda	Aria estern	a				
Potenza terr	mica utile	in riscaldament	:0	29,8	kW		
Coefficiente	di presta:	zione (COP)		4,12			
Temperature	e di riferir	nento:					
Sorgente fre	edda	7,0	°C	Sorgente calda		20,0	°C
Zona S	ala polif	unzionale		Quantità		1	
Servizio R	affresca	mento		Fluido termo	ovettore	Aria	
Tipo di gene	ratore	Pompa di calo	ore	Combustibil	e	Energia	a elettrica
Marca – mod	dello	TIPO CLIVE	T CKN-XI	HE2i 10.1			
Tipo sorgent	te fredda	Aria					
Potenza terr	nica utile	in raffrescamer	nto	30,4	kW		
Indice di eff	icienza en	ergetica (EER)		3,67			
Temperature	e di riferir	nento:			_		
Sorgente fre	edda	19,0	°C	Sorgente calda	2	22,7	°C

Zona	<u> </u>	Bar / Cucina						
Zona	Bar / Cuc	ina			Quantità		1	
Servizio	Riscaldan	nento			Fluido termo	vettore	Aria	
Tipo di ge	eneratore	Pompa di calore			Combustibile		Energia	a elettrica
Marca – r	nodello	TIPO CLIVET/	Mini VR	RF/MS	SAN-XMi 12 <mark>0</mark>	M		
Tipo sorg	ente fredda	Aria esterna						
Potenza t	ermica utile	in riscaldamento			13,2	kW		
Coefficier	ite di presta	zione (COP)			3,80	•		
Temperat	ure di riferir	mento:				•		
Sorgente	fredda	7,0	°C	Sor	gente calda		20,0	°C
			-			-		
7	D / C	*			0			
Zona	Bar / Cuc				Quantità		1	
Servizio		Ida sanitaria			Fluido termo			1-44
Tipo di ge	-	Pompa di calore	214/4 8/ 5		Combustibile		Energia	elettrica
Marca – r		TIPO CLIVET S	WAN-2	2 190				
Tipo sorg	ente fredda	Aria esterna						
Potenza t	ermica utile	in riscaldamento			2,3	kW		
Coefficier	ite di presta	zione (COP)			3,20	•		
Temperat	ure di riferir	mento:				•		
Sorgente	fredda	7,0	°C	Sor	gente calda		<i>55,0</i>	°C
			-			-		
Zona	Bar / Cuc	ina			Quantità		1	
Servizio	Raffresca				Fluido termo	vettore	Aria	
Tipo di ge	eneratore	Pompa di calore			Combustibile			a elettrica
Marca – r	nodello	TIPO CLIVET/	Mini VR	RF/MS	SAN-XMi 120	M		
Tipo sorg	ente fredda	Aria						
Potenza termica utile in raffrescamento 12,3 kW								
Indice di efficienza energetica (EER) 3,78								
	ure di riferir					•		
Sorgente		19,0	°C	Sor	gente calda	_	22,7	°C

Per gli impianti termici con o senza produzione di acqua calda sanitaria, che utilizzano, in tutto o in parte, macchine diverse da quelle sopra descritte, le prestazioni di dette macchine sono fornite utilizzando le caratteristiche fisiche della specifica apparecchiatura, e applicando, ove esistenti, le vigenti norme tecniche.

c) Specifiche relative ai sistemi di regolazione dell'impianto term	Spec	ecifich	e relative	ai sistemi	di regolaz	ione dell'im	pianto term
---	------	---------	------------	------------	------------	--------------	-------------

Tipo di conduzione prevista	[X] continua con attenuazione notturna	[] intermittente
Altro		
Tipo di conduzione estiva previs	sta:	

Regolatori climatici delle singole zone o unità immobiliari

Descrizione sintetica delle funzioni	Numero di apparecchi	Numero di livelli di programmazione della temperatura nelle 24 ore
Cronotermostato di zona	2	2

e) Terminali di erogazione dell'energia termica

Tipo di terminali	Numero di apparecchi	Potenza termica nominale [W]
Bocchette di aerazione	12	20000
Cassette a soffitto	3	12000

h) Specifiche dell'isolamento termico della rete di distribuzione

Descrizione della rete	Tipologia di isolante	λ _{is} [W/mK]	Sp _{is} [mm]
Primaria	Materiali espansi organici a cella chiusa	0,040	30

 λ_{is} Conduttività termica del materiale isolante

Spis Spessore del materiale isolante

j) Schemi funzionali degli impianti termici

si veda schema allegato

5.2 Impianti fotovoltaici

Descrizione e caratteristiche tecniche

Impianto fotovoltaico esposto ad ovest potenza 12,00 kWp

Schemi funziona	ıli	

5.5 Altri impianti

Descrizione e caratteristiche tecniche di apparecchiature, sistemi e impianti di rilevante importanza funzionale

Impianto di ventilazione meccanica controllata di tipo canalizzato a doppio flusso con recuperatore di calore

Livello minimo di efficienza dei motori elettrici per ascensori e scale mobili

6. PRINCIPALI RISULTATI DEI CALCOLI

Edificio: Edificio polifunzionale

- Si dichiara che l'edificio oggetto della presente relazione può essere definito "edificio ad energia quasi zero" in quanto sono contemporaneamente rispettati:
 - Tutti i requisiti previsti dalla lettera b), del punto 6.13 dell'allegato 1 del decreto attuativo della DGR 3868 del 17.7.2015
 - Gli obblighi di integrazione delle fonti rinnovabili previsti dalla lettera c) del punto 6.13 dell'allegato 1 del decreto attuativo della DGR 3868 del 17.7.2015

a) Involucro edilizio e ricambi d'aria

Caratteristiche termiche dei componenti opachi dell'involucro edilizio

Cod.	Descrizione	Trasmittanza U [W/m²K]	Trasmittanza media [W/m²K]
M1	MURO ESTERNO CAPPOTTO	0,155	0,157
M2	MURO ESTERNO CARTONGESSO	0,210	0,209
M3	MURO VERSO DEPOSITO	0,154	0,155
S1	CONTROSOFFITTO	0,160	0,160
P1	PAVIMENTO CONTROTERRA	0,448	0,452

Caratteristiche termiche dei divisori opachi e delle strutture dei locali non climatizzati

Cod.	Descrizione	Trasmittanza U [W/m²K]	Trasmittanza media [W/m²K]
M6	MURO ESTERNO CAPP_ZNR	0,155	0,155
M7	MURO ESTERNO CG_ZNR	0,210	0,210
M8	MURO ESTERNO DEPOSITO	0,736	0,736
M9	MURO DEPOSITO BLOCCHI	0,521	0,521
P2	PAVIMENTO DEPOSITO	0,723	0,723
S2	COPERTURA ZNR	2,200	2,200
<i>S3</i>	COPERTURA DEPOSITO	0,753	0,753

Caratteristiche igrometriche dei componenti opachi dell'involucro edilizio

Cod.	Descrizione	Condensa superficiale	Condensa interstiziale
M1	MURO ESTERNO CAPPOTTO	Positiva	Positiva
M11	PORTA REI	Positiva	Positiva
M12	PORTA ESTERNA	Positiva	Positiva
M2	MURO ESTERNO CARTONGESSO	Positiva	Positiva
М3	MURO VERSO DEPOSITO	Positiva	Positiva
S1	CONTROSOFFITTO	Positiva	Positiva
P1	PAVIMENTO CONTROTERRA	*	*

^(*) Struttura esistente, non soggetta alle verifiche di legge.

Caratteristiche di massa superficiale Ms e trasmittanza periodica YIE dei componenti opachi

Cod.	Descrizione	Ms [kg/m²]	YIE [W/m²K]
M1	MURO ESTERNO CAPPOTTO	220	0,006

M2	MURO ESTERNO CARTONGESSO	13	0,024
----	--------------------------	-----------	-------

Caratteristiche termiche dei componenti finestrati

Cod.	Descrizione	Trasmittanza infisso U _w [W/m²K]	Trasmittanza vetro U _g [W/m²K]
M11	PORTA REI	0,535	-
M12	PORTA ESTERNA	0,548	-
W1	F 160x240	1,300	1,000
W10	F 70×70	1,300	1,000
W2	F 150x240	1,300	1,000
W3	PF 240x240	1,300	1,000
W4	F 200x240	1,300	1,000
W5	PF 340x240	1,300	1,000
W6	PF 120x240	1,300	1,000
W7	F 180x240	1,300	1,000
W8	F 135x240	1,300	1,000
W9	PF 200x240	1,300	1,000

Numero di ricambi d'aria (media nelle 24 ore) - specificare per le diverse zone

N.	Descrizione	Valore di progetto [vol/h]	Valore medio 24 ore [vol/h]
1	Sala polifunzionale	1,77	1,77
2	Bar / Cucina	9,08	3,49

Portata d'aria di ricambio (solo nei casi di ventilazione meccanica controllata)

Q.tà	Portata G [m³/h]	Portata G _R [m ³ /h]	η₁ [%]
1	-	-	-

G Portata d'aria di ricambio per ventilazione meccanica controllata

G_R Portata dell'aria circolante attraverso apparecchiature di recupero del calore disperso

 η_T Rendimento termico delle apparecchiature di recupero del calore disperso

b) Indici di prestazione energetica per la climatizzazione invernale ed estiva, per la produzione di acqua calda sanitaria, per la ventilazione e l'illuminazione

Determinazione dei seguenti indici di prestazione energetica, espressi in kWh/m² anno, così come definite al punto 6 dell'Allegato 1 del decreto attuativo della DGR 3868 del 17.7.2015, rendimenti e parametri che ne caratterizzano l'efficienza energetica:

Metodo di calcolo utilizzato (indicazione obbligatoria)

UNI/TS 11300 e norme correlate

Coefficiente medio globale di scambio termico per trasmissione per unità di superficie disperdente (UNI EN ISO 13789)

Sala polifunzionale		
Superficie disperdente S	476,97	m^2
Valore di progetto H'_T	0,32	W/m²K
Valore limite (Tabella 10, allegato B) $H'_{T,L}$	0,65	W/m²K
Verifica (positiva / negativa)	Positiva	

Bar / Cucina

Superficie disperdente S **243,82** m²

l l		Dott. Ing. Fulvio Marazz
Valore di progetto H′ _⊤	0,22	W/m ² K
Valore limite (Tabella 10, allegato B) $H'_{T,L}$	0,65	W/m ² K
Verifica (positiva / negativa)	Positiva	· -
Area solare equivalente estiva per unità di superfici	e utile	
Sala polifunzionale		
Superficie utile A _{sup utile}	218,47	m ²
Valore di progetto A _{sol,est} /A _{sup utile}	0,036	
Valore limite (Tabella 11, appendice A) $(A_{sol,est}/A_{sup})$	0,040	
Verifica (positiva / negativa)	Positiva	· -
Bar / Cucina		
Superficie utile A _{sup utile}	87,57	m^2
Valore di progetto A _{sol,est} /A _{sup utile}	0,010	·
Valore limite (Tabella 11, appendice A) (A _{sol,est} /A _{sup} _{utile}) _{limite}	0,040	
Verifica (positiva / negativa)	Positiva	•
Indice di prestazione termica utile per la climatizza	zione invernale de	ell'edificio
Valore di progetto EP _{H,nd}	194,42	kWh/m²
Valore limite EP _{H,nd,limite}	195,56	kWh/m²
Verifica (positiva / negativa)	Positiva	· -
Indice di prestazione termica utile per la climatizza	zione estiva dell'e	edificio
Valore di progetto EP _{C,nd}	7,22	kWh/m²
Valore limite EP _{C,nd,limite}	11,53	kWh/m²
Verifica (positiva / negativa)	Positiva	•
Indice della prestazione energetica globale dell'edit	ficio (Energia prin	naria)
Prestazione energetica per riscaldamento EP _H	194,41	kWh/m²
Prestazione energetica per acqua sanitaria EP _W	6,47	kWh/m²
Prestazione energetica per raffrescamento EP _C	11,29	kWh/m²
Prestazione energetica per ventilazione EP _V	0,90	kWh/m ²
Prestazione energetica per illuminazione EP _L	16,04	kWh/m ²
Prestazione energetica per servizi EP _T	0,00	kWh/m ²
Valore di progetto EP _{gl,tot}	229,11	kWh/m ²
Valore limite EP _{gl,tot,limite}	306,97	kWh/m ²
Verifica (positiva / negativa)	Positiva	
Indice della prestazione energetica globale d rinnovabile)	lell'edificio (Ene	rgia primaria non
Valore di progetto EP _{gl,nr}	114,23	kWh/m²

32,1 %

b.1) Efficienze medie stagionali degli impianti

Descrizione	Servizi	ղ _ց [%]	η _{ց,amm} [%]	Verifica
Sala polifunzionale	Riscaldamento	189,4	123,3	Positiva
Bar / Cucina	Riscaldamento	59,2	58,4	Positiva
Bar / Cucina	Acqua calda sanitaria	73,8	50,5	Positiva
Sala polifunzionale	Raffrescamento	63,4	30,1	Positiva
Bar / Cucina	Raffrescamento	633,8	194,2	Positiva

c) Impianti fonti rinnovabili per la produzione di acqua calda sanitaria

Percentuale di copertura del fabbisogno annuo	78,54	%
Percentuale minima di copertura prevista	55,00	%
Verifica (positiva / negativa)	Positiva	
(verifica secondo D.Lgs. 3 marzo 2011, n.28 - Allegato 3)		

d) Impianti fotovoltaici

Percentuale di copertura del fabbisogno annuo

Fabbisogno di energia elettrica da rete	17927	kWh _e
Energia elettrica da produzione locale	10347	kWh _e
Potenza elettrica installata	12,00	kW
Potenza elettrica richiesta	6,16	kW
Verifica (positiva / negativa)	Positiva	•

Consuntivo energia

Energia consegnata o fornita (E _{del})	12191	kWh
Energia rinnovabile (E _{gl,ren})	114,88	kWh/m²
Energia esportata (E _{exp})	1884	kWh
Fabbisogno annuo globale di energia primaria (E _{gl,tot})	229,11	kWh/m²
Energia rinnovabile in situ (elettrica)	10347	$kWh_{e} \\$
Energia rinnovabile in situ (termica)	0	kWh

e) Copertura da fonti rinnovabili

Percentuale da fonte rinnovabile	55,2	%
Percentuale minima di copertura prevista	55,0	%
Verifica (positiva / negativa)	Positiva	

f) Valutazione della fattibilità tecnica, ambientale ed economica per l'inserimento di sistemi ad alta efficienza

7. ELEMENTI SPECIFICI CHE MOTIVANO EVENTUALI DEROGHE A NORME FISSATE DALLA NORMATIVA VIGENTE

Nei casi in cui la normativa vigente consente di derogare ad obblighi generalmente validi, in questa sezione vanno adeguatamente illustrati i motivi che giustificano la deroganel caso specifico.

8. DOCUMENTAZIONE ALLEGATA

[X]	Piante di ciascun piano degli edifici con orientamento e indicazione d'uso prevalente dei singoli locali e definizione degli elementi costruttivi. N. 1 Rif.: Vedi planimetria allegata
[]	Prospetti e sezioni degli edifici con evidenziazione dei sistemi fissi di protezione solare e definizione degli elementi costruttivi. N. 1 Rif.: Vedi planimetria allegata
[]	Elaborati grafici relativi ad eventuali sistemi solari passivi specificatamente progettati per favorire lo sfruttamento degli apporti solari. N. 1 Rif.: Vedi planimetria allegata
[X]	Schemi funzionali degli impianti contenenti gli elementi di cui all'analoga voce del paragrafo "Dati relativi agli impianti". N. 1 Rif.: Vedi scheda allegata
[X]	Tabelle con indicazione delle caratteristiche termiche, termoigrometriche e della massa efficace dei componenti opachi dell'involucro edilizio con verifica dell'assenza di rischio di formazione di muffe e di condensazioni interstiziali. N. 13 Rif.: da M1 a M7 / da P1 a P3 / da S1 a S3
[X]	Tabelle con indicazione delle caratteristiche termiche dei componenti finestrati dell'involucro edilizio e della loro permeabilità all'aria. N. 6 Rif.: da W1 a W6
[X]	Tabelle indicanti i provvedimenti ed i calcoli per l'attenuazione dei ponti termici. N. 5 Rif.: da Z1 a Z5
[]	Schede con indicazione della valutazione della fattibilità tecnica, ambientale ed economica per l'inserimento di sistemi alternativi ad alta efficienza. N. Rif.:
[]	Altri allegati. N. Rif.:
	coli e le documentazioni che seguono sono disponibili ai fini di eventuali verifiche da parte dell'ente ntrollo presso i progettisti:
[X]	Calcolo potenza invernale: dispersioni dei componenti e potenza di progetto dei locali.
[X]	Calcolo energia utile invernale del fabbricato $Q_{h,nd}$ secondo UNI/TS 11300-1.
[X]	Calcolo energia utile estiva del fabbricato $Q_{C,nd}$ secondo UNI/TS 11300-1.
[X]	Calcolo dei coefficienti di dispersione termica H_T - H_U - H_G - H_A - H_V .
[X]	Calcolo mensile delle perdite ($Q_{h,ht}$), degli apporti solari (Q_{sol}) e degli apporti interni (Q_{int}) secondo UNI/TS 11300-1.
[X]	Calcolo degli scambi termici ordinati per componente.
[X]	Calcolo del fabbisogno di energia primaria rinnovabile, non rinnovabile e totale secondo UNI/TS 11300-5.
[X]	Calcolo del fabbisogno di energia primaria per la climatizzazione invernale secondo UNI/TS 11300-2 e UNI/TS 11300-4.
[X]	Calcolo del fabbisogno di energia primaria per la produzione di acqua calda sanitaria secondo UNI/TS 11300-2 e UNI/TS 11300-4.
[X]	Calcolo del fabbisogno di energia primaria per la climatizzazione estiva secondo UNI/TS 11300-3.
[X]	Calcolo del fabbisogno di energia primaria per l'illuminazione artificiale degli ambienti secondo UNI/TS 11300-2 e UNI EN 15193.
[X]	Calcolo del fabbisogno di energia primaria per il servizio di trasporto di persone o cose secondo UNI/TS 11300-

. DICHIARAZIONE DI RISPONDENZA									
Il sottoscritto	Ing.	Fulvio	Marazzi						
	TITOLO	NOME	COGNOME						
iscritto a	Ingegner	i	Cremona	941					
	ALBO - ORDI	NE O COLLEGIO DI APPARTENENZA	PROV.	N. ISCRIZIONE					

essendo a conoscenza delle sanzioni previste dall'articolo 27 della legge regionale 11 Dicembre 2006 n. 24 e s.m.i.

DICHIARA

sotto la propria responsabilità che:

- a) il progetto relativo alle opere di cui sopra è rispondente alle prescrizioni contenute nel decreto attuativo della DGR 3868 del 17.7.2015;
- b) il progetto relativo alle opere di cui sopra rispetta gli obblighi di integrazione delle fonti rinnovabili secondo i principi minimi contenuti nel decreto attuativo della DGR 3868 del 17.7.2015;
- c) i dati e le informazioni contenuti nella relazione tecnica sono conformi a quanto contenuto o desumibile dagli elaborati progettuali.

Data, **20/10/2022**

Il progettista	ORDINE DEGLI INGEGNERI DELLA PROVINCIA DI CREMONA Dott. Ing. Marazzi Fulvio N. 941 di Iscrizione all' Albo	Ellio Aoron
ii progettista		
	TIMBRO	FIRMA

10. Attestato di prestazione energetica di PROGETTO

ATTESTATO DI PRESTAZIONE ENERGETICA DEGLI EDIFICI

CODICE IDENTIFICATIVO:

VALIDO FINO AL: 25/10/2032

DATI GENERALI

Des	tinazi	one	d'uso
-----	--------	-----	-------

Residenziale

X Non residenziale

Classificazione D.P.R. 412/93: E.4 (1)

(Og	getto dell'attestat	0
7	X	Intero edificio	

Unità immobiliare

Gruppo di unità immobiliari

Numero di unità immobiliari

di cui è composto l'edificio: 2

Nuova costruzione

Passaggio di proprietà

Locazione

Ristrutturazione importante

Riqualificazione energetica

X Altro:

Dati identificativi

Regione : LOMBARDIA

Comune: Monte Cremasco

Indirizzo : Via Ugo Foscolo - 26010

Monte Cremasco (CR)

Piano :

Coordinate GIS: 45,369985 N - 9,573787 E

Zona climatica :

Anno di costruzione : 1990

Superficie utile riscaldata (m²): 306,04

Superficie utile raffrescata (m²): 291,95

Volume lordo riscaldato (m³): 1437,22

Volume lordo raffrescato (m³): 1367,25

Comune catastale F434				Sezione		Foglio 3			Particella		849						
Subalterni	da	а	L	da	а			da		а	2		da		а		
Altri subalterni																	

Servizi energetici presenti

Prestazione energetica del

X

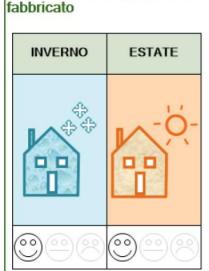
Climatizzazione invernale

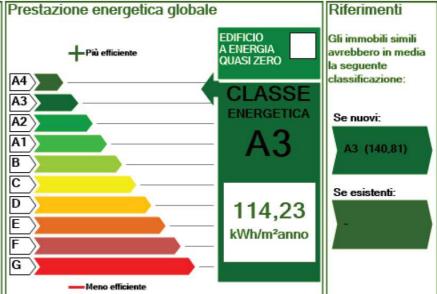
Climatizzazione estiva

X

Ventilazione meccanica

X :


Illuminazione


Prod. acqua calda sanitaria

Trasporto di persone o cose

PRESTAZIONE ENERGETICA GLOBALE E DEL FABBRICATO

La sezione riporta l'indice di prestazione energetica globale non rinnovabile in funzione del fabbricato e dei servizi energetici presenti, nonché la prestazione energetica del fabbricato, al netto del rendimento degli impianti presenti.

Pag. 1

VERIFICHE CRITERI AMBIENTALI MINIMI (CAM) secondo DM 11.10.2017

Edificio: Edificio polifunzionale

Intervento Edifici di nuova costruzione

Elenco criteri:

Descrizione	Esito
2.3.2 Prestazione energetica	Positiva
2.3.3 Approvvigionamento energetico	Positiva
2.3.5.1 Illuminazione naturale	Positiva
2.3.5.2 Aerazione naturale e ventilazione meccanica controllata	Positiva
2.3.5.3 Dispositivi di protezione solare	Positiva
2.3.5.7 Comfort termo-igrometrico	Positiva
2.4.1.1 Disassemblabilità	Positiva
2.4.1.2 Materia recuperata o riciclata	Positiva

Criterio 2.3.2 Prestazione energetica

Elenco verifiche:

Tipo verifica	Esito	Valore ammissibile		Valore calcolato	u.m.
Area solare equivalente estiva per unità di superficie utile	Positiva				
Coefficiente medio globale di scambio termico per trasmissione (H't)	Positiva				
Efficienza media stagionale dell'impianto per servizi riscaldamento, acqua calda sanitaria e raffrescamento	Positiva				
Indice di prestazione termica utile per riscaldamento	Positiva	195,56	>	194,42	kWh/m²
Indice di prestazione termica utile per il raffrescamento	Positiva	11,53	>	7,22	kWh/m²
Indice di prestazione energetica globale	Positiva	306,97	>	229,11	kWh/m²
Capacità termica areica interna periodica	Positiva				

Dettagli - Area solare equivalente estiva per unità di superficie utile:

Nr.	Descrizione	Verifica	Asol,eq,am m [-]		Asol,eq [-]	Asol [m²]	Su [m²]
1	Sala polifunzionale	Positiva	0,040	IV	0,036	7,86	218,47
2	Bar / Cucina	Positiva	0,040	2	0,010	0,84	87,57

<u> Dettagli – Coefficiente medio globale di scambio termico per trasmissione (H't):</u>

Nr.	Descrizione	Cat. DPR. 412	H't amm. [W/m²K]		H't [W/m²K]
1	Sala polifunzionale	E.4 (1)	0,55	IV	0,32
2	Bar / Cucina	E.4 (1)	0,50	2	0,22

<u>Dettagli – Efficienza media stagionale dell'impianto per servizi riscaldamento, acqua calda sanitaria e raffrescamento:</u>

Nr.	Servizi	Verifica	η g amm [%]		ŋ g [%]
1	Riscaldamento	Positiva	123,3	\	189,4
2	Riscaldamento	Positiva	58,4	≤	59,2
3	Acqua calda sanitaria	Positiva	50,5	≤	73,8
4	Raffrescamento	Positiva	30,1	\	63,4
5	Raffrescamento	Positiva	194,2	≤	633,8

Dettagli - Indice di prestazione termica utile per riscaldamento:

Riferimento: D.M. 26.06.15, allegato 1, paragrafo 3.3, punto 2 - lettera b

Su	Qh,nd amm.	Qh,nd
[m²]	[kWh]	[kWh]
306,04	59847,70	

<u>Dettagli - Indice di prestazione termica utile per il raffrescamento:</u>

Riferimento: D.M. 26.06.15, allegato 1, paragrafo 3.3, punto 2 - lettera b

Su	Qc,nd amm.	Qc,nd
[m²]	[kWh]	[kWh]
306,04	3529,00	2210,24

Dettagli - Indice di prestazione energetica globale:

Riferimento: D.M. 26.06.15, allegato 1, paragrafo 3.3, punto 2 - lettera b

Servizio	EP ed. riferimento [kWh/m²]	EP [kWh/m²]
Riscaldamento	230,02	194,41
Acqua calda sanitaria	9,47	6,47
Raffrescamento	38,06	11,29
Ventilazione	9,46	0,90
Illuminazione	19,97	16,04
Trasporto	0,00	0,00
TOTALE	306,97	229,11

<u> Dettagli – Capacità termica areica interna periodica (Cip):</u>

Cod.	Tipo	Descrizione	Verifica	Cip amm. [kJ/m²K]		Cip [kJ/m²K]
M2	T	MURO ESTERNO CARTONGESSO	Positiva	40,000	Y	84,781
M1	T	MURO ESTERNO CAPPOTTO	Positiva	40,000	≤	43,018

Criterio: 2.3.3 Approvvigionamento energetico

Verifiche secondo All 3, DLgs.n. 28/2011 [X]
Verifiche secondo All 3 p. 8, DLgs. n. 28/2011 []

Elenco verifiche:

Tipo verifica	Esito	Valore ammissibile		Valore calcolato	u.m.
Copertura totale da fonte rinnovabile	Positiva	<i>54,50</i>	٧	55,10	%

<u>Dettagli - Copertura totale da fonte rinnovabile:</u>

Riferimento: DLgs 3.3.2011 n. 28. Allegato 3 - comma 1

Servizio	Qp ren [kWh]	Qp nren [kWh]	Qp tot [kWh]
Riscaldamento	27610,57	31885,18	59495,75
Acqua calda sanitaria	1556,19	425,29	1981,48
Raffrescamento	3434,64	20,91	3455,55
TOTALI	32601,40	32331,38	64932,79

[%] copertura = [(32601,40) / (64932,79)] * 100 = 55,10

Criterio: 2.3.5.1 Illuminazione naturale

<u>Dettagli – Fattore medio di luce diurna (FLDm):</u>

Zona	Locale	Descrizione	Verifica	FLDm ammissibile [%]		FLDm calcolato [%]
1	1	Sala polifunzionale	Positiva	2,000	IA	5,535
2	2	Bar	Positiva	2,000	<u>\</u>	5,144

Zona 1 - Sala polifunzionale | Locale 1 - Sala polifunzionale

Cod.	Descrizione	Tipo	Esposizione	Fattore finestra ε	Coeff. di riduzione ψ
W1	F 160x240	T	Nord	0,50	1,00
W1	F 160x240	T	Nord	0,50	1,00
W2	F 150x240	T	Nord	0,50	1,00
W2	F 150x240	Τ	Nord	0,50	1,00
W3	PF 240x240	Τ	Nord	0,50	1,00
W4	F 200x240	Τ	Est	0,50	1,00
W4	F 200x240	Τ	Est	0,50	1,00
W4	F 200x240	T	Est	0,50	1,00
W4	F 200x240	T	Est	0,50	1,00
W4	F 200x240	Т	Est	0,50	1,00
W5	PF 340x240	T	Est	0,50	1,00
W5	PF 340x240	T	Est	0,50	1,00
W6	PF 120x240	T	Est	0,50	1,00
W7	F 180x240	Τ	Est	0,50	1,00

Coefficiente medio di riflessione luminosa (pm)

Fattore medio di luce diurna limite

0,80

2,00 %

Fattore medio di luce diurna FLDm

5,53 %

Verifica FLDm

Positiva

Zona 2 - Bar / Cucina | Locale 2 - Bar

Cod.	Descrizione	Tipo	Esposizione	Fattore finestra ε	Coeff. di riduzione ψ
W8	F 135x240	T	Nord	0,50	1,00
W8	F 135x240	Τ	Nord	0,50	1,00
W9	PF 200x240	T	Nord	0,50	1,00

Verifica FLDm Positiva

Criterio: 2.3.5.2 Aerazione naturale e ventilazione meccanica controllata

<u> Dettagli - Rapporto Aerante (R.A.):</u>

Zona	Locale.	Descrizione	Verifica	R.A. ammissibile [%]		R.A. calcolato [%]
1	1	Sala polifunzionale	Positiva	0,125	٧	0,341
2	1	Cucina	Positiva	0,125	٧	0,136
2	2	Bar	Positiva	0,125	٧	0,301
2	3	Servizi	Positiva	*	*	*

^(*) La verifica risulta automaticamente soddisfatta per i bagni secondari dotati di aerazione forzata che garantisca almeno 5 ricambi l'ora.

Criterio: 2.3.5.3 Dispositivi di protezione solare

<u>Dettagli – Fattore di trasmissione totale (ggl+sh)</u>

Cod.	Tipo	Descrizione	Verifica
W10	T	F 70x70	Positiva

W10 - F 70x70

Esposizione		21	dicembre	e (solstizi	o inverna	ale)			g _{gl+sh} ammissibile	Verifica
Esposizione	10	11	12	13	14	15	16		[-]	verilica
Sud	0,00	0,26	0,26	0,26	0,26	0,26	0,26	<	0,35	Positiva

Esposizione			21 giugno (solstizio estivo)						g _{gl+sh} ammissibile	Varifica
	10	11	12	13	14	15	16		[-]	Verifica
Sud	0,18	0,18	0,18	0,18	0,18	0,17	0,15	\	0,35	Positiva

Criterio: 2.3.5.7 Comfort termo-igrometrico

Elenco verifiche:

Tipo verifica	Esito
Verifica termoigrometrica	Positiva
Verifica sulla temperatura critica interna del ponte termico	Positiva
Voto medio previsto (PMV) e percentuale prevista di insoddisfatti (PPD)	Positiva

<u> Dettagli - Verifica termoigrometrica:</u>

Cod.	Tipo	Descrizione	Condensa superficiale	Condensa interstiziale
M1	T	MURO ESTERNO CAPPOTTO	Positiva	Positiva
M2	T	MURO ESTERNO CARTONGESSO	Positiva	Positiva
М3	U	MURO VERSO DEPOSITO	Positiva	Positiva
M11	U	PORTA REI	Positiva	Positiva
M12	T	PORTA ESTERNA	Positiva	Positiva
<i>S</i> 1	U	CONTROSOFFITTO	Positiva	Positiva

<u> Dettagli – Verifica sulla temperatura critica interna del ponte termico:</u>

Cod.	Descrizione	Verifica rischio muffa
<i>Z</i> 2	R - Parete - Copertura	Positiva
Z4	W - Parete - Telaio	Positiva
<i>Z3</i>	R - Parete CG - Copertura	Positiva
<i>Z</i> 1	GF - Parete - Solaio controterra	Positiva

Dettagli - Voto medio previsto (PMV) e Percentuale prevista di insoddisfatti (PPD):

Zona	Locale	Descrizione	Verifica	Categoria minima	Categoria invernale	Categoria estiva
1	1	Sala polifunzionale	Positiva	В	В	Α
2	2	Bar	Positiva	В	В	A

Zona 1 - Sala polifunzionale | Locale 1 - Sala polifunzionale

<u> Dettagli - Categoria invernale</u>

Metabolismo energetico (M)	70,00	W/m ²
Potenza meccanica efficace (W)	0,00	W/m^2
Temperatura aria interna (θ_a)	20,0	°C
Umidità relativa interna (UR)	50,0	%
Velocità dell'aria (v _a)	0,10	m/s
Isolamento termico dell'abbigliamento (I_{cl})	0,200	m ² K/W
Giorno di riferimento	24 dicembre - ore 8	
Giorno di riferimento	24 dicembre - ore 8 19,7	°C
		°C -
Temperatura interna media radiante ($\theta_{int,r,mn}$)	19,7	°C - %
Temperatura interna media radiante $(\theta_{int,r,mn})$ Voto medio previsto (PMV)	19,7 -0,29	-
Temperatura interna media radiante (θ _{int,r,mn}) Voto medio previsto (PMV) Percentuale prevista di insoddisfatti (PPD)	19,7 -0,29 6,81	-

		Dott. Ing. Fulvio M
Dettagli - Categoria estiva		
Metabolismo energetico (M)	70,00	W/m ²
Potenza meccanica efficace (W)	0,00	W/m ²
Temperatura aria interna (θ_a)	26,0	°C
Umidità relativa interna (UR)	50,0	%
Velocità dell'aria (va)	0,15	m/s
Isolamento termico dell'abbigliamento (I_{cl})	0,100	m ² K/W
Giorno di riferimento	12 luglio - ore 11	
Temperatura interna media radiante $(\theta_{int,r,mn})$	25,3	°C
Voto medio previsto (PMV)	0,00	-
Percentuale prevista di insoddisfatti (PPD)	5,00	%
Categoria	A	-
Verifica PMV - PPD	Positiva	-
Zona 2 - Bar / Cucina Locale 2 - Bar		-
Dettagli - Categoria invernale		
Metabolismo energetico (M)	70,00	W/m ²
Potenza meccanica efficace (W)	0,00	W/m²
Temperatura aria interna (θ _a)	20,0	°C
Umidità relativa interna (UR)	50,0	- %
Velocità dell'aria (va)	0,10	m/s
Isolamento termico dell'abbigliamento (I_{cl})	0,200	m²K/W
Giorno di riferimento	19 settembre - ore 23	
Temperatura interna media radiante (θ _{int,r,mn})	20,0	- °C
Voto medio previsto (PMV)	-0,26	- -
Percentuale prevista di insoddisfatti (PPD)	6,44	- %
Categoria	В	-
Verifica PMV - PPD	Positiva	.
<u> Dettagli - Categoria estiva</u>		
Metabolismo energetico (M)	70,00	W/m ²
Potenza meccanica efficace (W)	0,00	W/m ²
Temperatura aria interna (θ_a)	26,0	°C
Umidità relativa interna (UR)	50,0	- %
Velocità dell'aria (va)	0,15	m/s
Isolamento termico dell'abbigliamento (I_{cl})	0,100	m²K/W
Giorno di riferimento	28 giugno - ore 17	
Temperatura interna media radiante $(\theta_{int,r,mn})$	24,9	°C
Voto medio previsto (PMV)	-0,06	-
Percentuale prevista di insoddisfatti (PPD)	5,07	%
Categoria	Α	-
Verifica PMV - PPD	Positiva	-
	-	-

Criterio: 2.4.1.1 Disassemblabilità

Elenco verifiche:

Tipo verifica	Esito	Valore ammissibile		Valore calcolato	u.m.
(Peso materiali riciclabili-riutilizzabili) / (Peso totale dei materiali)	Positiva	50,00	Y	61,37	%

[X] Il 15% dei materiali riciclabili/riutilizzabili è costituito da materiale non strutturale.

Peso materiali riciclabili / riutilizzabili = A 129817,53 kg
Peso totale dei materiali dei componenti edilizi = B 211539,75 kg
Percentuale peso/peso = A/B 61,37 %

<u> Dettagli - Elenco materiali:</u>

Cod.	Descrizione	M.V. [kg/m³]	Strutture coinvolte	Peso [kg]	Ric. /Riut.	Peso Ric./Riut. [kg]
e1004	Intonaco di gesso e sabbia	1600	M1, M3, M4, M5, M6, M13	16471,92	X	16471,92
e1006	Intonaco di cemento e sabbia	1800	M1, M3, M6	5552,46	X	5552,46
e106	Barriera vapore foglio di alluminio (.02505 mm)	2700	M2, M7	380,24	X	380,24
e109	Barriera vapore in fogli di P.V.C.	1390	<i>S</i> 1	946,95	X	946,95
e1101	Legno di abete flusso perpend. alle fibre	450	M10	170,10	X	170,10
e1502	Acciaio inossidabile, austenitico	7900	M11, M12	159,26	X	159,26
e1504	Alluminio	2700	<i>S</i> 1	1839,40	X	1839,40
e1828	Polistirene espanso sinterizzato (alla grafite)	20	M1, M3, M6	863,72	X	863,72
e1920	Schiuma poliuretanica (celle chiuse < 90%)	20	M11, M12	5,04		0,00
e26305	Klima Fix - Adesivo&Rasante da Cappotto cementizio bianco	1420	M1, M3, M6	2190,14		0,00
e728	Pannello in lana di roccia - standard (perimetrali intercapedine)	70	M2, M7, S1	6247,53	X	6247,53
e8401	Mattone forato	775	M4	1014,32		0,00
e8403	Mattone forato	717	M5	4892,23	X	4892,23
u1701	AQUAPANEL OUTDOOR	11150	M2, M7	78512,72		0,00
u820	Muratura in laterizio POROTON	870	M1, M3, M6, M13	92259,15	X	92259,15

Legenda simboli

M.V. Massa volumica del materiale

Peso Peso del materiale

Ric./Riut. Materiale riciclabile o riutilizzabile

Peso Ric./Riut. Peso del materiale riciclabile o riutilizzabile

<u> Dettagli - Vetri serramenti:</u>

Cod.	Descrizione	Vol. [m³]	M.V. [kg/m³]	Peso [kg]	Ric. /Riut.	Peso Ric./Riut. [kg]
W1	F 160x240	0,066	50	3,28	X	3,28

W10	F 70x70	0,006	50	0,29	X	0,29
W2	F 150x240	0,060	50	3,02	X	3,02
W3	PF 240x240	0,048	50	2,39	X	2,39
W4	F 200x240	0,214	50	10,71	X	10,71
W5	PF 340x240	0,146	50	7,31	X	7,31
W6	PF 120x240	0,023	50	1,13	X	1,13
W7	F 180x240	0,038	50	1,89	X	1,89
W8	F 135x240	0,053	50	2,65	X	2,65
W9	PF 200x240	0,038	<i>50</i>	1,89	X	1,89

<u>Legenda simboli</u>

Vol. Volume del vetro

M.V. Massa volumica del vetro

Peso Peso del vetro

Ric./Riut. Materiale riciclabile o riutilizzabile

Peso Ric./Riut. Peso del materiale riciclabile o riutilizzabile

<u> Dettagli - Telai serramenti:</u>

Cod.	Descrizione	Vol. [m³]	M.V. [kg/m³]	Peso [kg]	Ric. /Riut.	Peso Ric./Riut. [kg]
W1	F 160x240	0,007	0	0,00		0,00
W10	F 70x70	0,003	0	0,00		0,00
W2	F 150x240	0,006	0	0,00		0,00
W3	PF 240x240	0,005	0	0,00		0,00
W4	F 200x240	0,018	0	0,00		0,00
W5	PF 340x240	0,012	0	0,00		0,00
W6	PF 120x240	0,003	0	0,00		0,00
W7	F 180x240	0,004	0	0,00		0,00
W8	F 135x240	0,006	0	0,00		0,00
W9	PF 200x240	0,005	0	0,00		0,00

Legenda simboli

Vol. Volume del telaio

M.V. Massa volumica del materiale del telaio

Peso Peso del materiale del telaio
Ric./Riut. Materiale riciclabile o riutilizzabile

Peso Ric./Riut. Peso del materiale riciclabile o riutilizzabile

Criterio: 2.4.1.2 Materia recuperata o riciclata

Elenco verifiche:

Tipo verifica	Esito	Valore ammissibile		Valore calcolato	u.m.
(Peso materiali recuperati-riciclati) / (Peso totale dei materiali)	Positiva	15,00	≤	15,81	%

[X] Il 5% dei materiali recuperati o riciclati è costituito da materiali non strutturali.

Peso totale dei materiali recuperati / riciclati = A 33436,59 kg Peso totale dei materiali dei componenti edilizi = B 211539,75 kg Percentuale peso/peso = A/B 15,81 %

Dettagli - Elenco materiali:

Cod.	Descrizione	M.V. [kg/m³]	Strutture coinvolte	Peso [kg]	%Rec /Ric [%]	Peso Rec./Ric. [kg]
e1004	Intonaco di gesso e sabbia	1600	M1, M3, M4, M5, M6, M13	16471,92	10,00	1647,19
e1006	Intonaco di cemento e sabbia	1800	M1, M3, M6	5552,46	10,00	555,25
e106	Barriera vapore foglio di alluminio (.02505 mm)	2700	M2, M7	380,24	0,00	0,00
e109	Barriera vapore in fogli di P.V.C.	1390	<i>S</i> 1	946,95	0,00	0,00
e1101	Legno di abete flusso perpend. alle fibre	450	M10	170,10	0,00	0,00
e1502	Acciaio inossidabile, austenitico	7900	M11, M12	159,26	0,00	0,00
e1504	Alluminio	2700	<i>S</i> 1	1839,40	0,00	0,00
e1828	Polistirene espanso sinterizzato (alla grafite)	20	M1, M3, M6	863,72	5,00	43,19
e1920	Schiuma poliuretanica (celle chiuse < 90%)	20	M11, M12	5,04	5,00	0,25
e26305	Klima Fix - Adesivo&Rasante da Cappotto cementizio bianco	1420	M1, M3, M6	2190,14	10,00	219,01
e728	Pannello in lana di roccia - standard (perimetrali intercapedine)	70	M2, M7, S1	6247,53	70,00	4373,27
e8401	Mattone forato	775	M4	1014,32	5,00	50,72
e8403	Mattone forato	717	M5	4892,23	5,00	244,61
u1701	AQUAPANEL OUTDOOR	11150	M2, M7	78512,72	10,00	<i>7</i> 851,27
u820	Muratura in laterizio POROTON	870	M1, M3, M6, M13	92259,15	20,00	18451,83

Legenda simboli

M.V. Massa volumica del materiale

Peso Peso del materiale

%Rec./Ric. Percentuale recuperabile o riciclabile del materiale Peso Rec./Ric. Peso del materiale recuperabile o riciclabile

<u> Dettagli – Vetri serramenti:</u>

Cod.	Descrizione	Vol. [m³]	M.V. [kg/m³]	Peso %Re [kg] %Re [m]		Peso Rec./Ric. [kg]
W1	F 160x240	0,066	50	3,28	0,00	0,00

W10	F 70x70	0,006	50	0,29	0,00	0,00
W2	F 150x240	0,060	50	3,02	0,00	0,00
W3	PF 240x240	0,048	50	2,39	0,00	0,00
W4	F 200x240	0,214	50	10,71	0,00	0,00
W5	PF 340x240	0,146	50	7,31	0,00	0,00
W6	PF 120x240	0,023	50	1,13	0,00	0,00
W7	F 180x240	0,038	50	1,89	0,00	0,00
W8	F 135x240	0,053	50	2,65	0,00	0,00
W9	PF 200x240	0,038	<i>50</i>	1,89	0,00	0,00

Legenda simboli

Vol. Volume del vetro

M.V. Massa volumica del vetro

Peso Peso del vetro

%Rec./Ric. Percentuale recuperabile o riciclabile del vetro Peso Rec./Ric. Peso del materiale recuperabile o riciclabile

<u> Dettagli - Telai serramenti:</u>

Cod.	Descrizione	Vol. [m³]	M.V. [kg/m³]	Peso [kg]	%Rec /Ric [%]	Peso Rec./Ric. [kg]
W1	F 160x240	0,007	0	0,00	0,00	0,00
W10	F 70x70	0,003	0	0,00	0,00	0,00
W2	F 150x240	0,006	0	0,00	0,00	0,00
W3	PF 240x240	0,005	0	0,00	0,00	0,00
W4	F 200x240	0,018	0	0,00	0,00	0,00
W5	PF 340x240	0,012	0	0,00	0,00	0,00
W6	PF 120x240	0,003	0	0,00	0,00	0,00
W7	F 180x240	0,004	0	0,00	0,00	0,00
W8	F 135x240	0,006	0	0,00	0,00	0,00
W9	PF 200x240	0,005	0	0,00	0,00	0,00

Legenda simboli

Vol. Volume del telaio

M.V. Massa volumica del materiale del telaio

Peso Peso del materiale del telaio

%Rec./Ric. Percentuale recuperabile o riciclabile del materiale del telaio

Peso Rec./Ric. Peso del materiale recuperabile o riciclabile

1.4. CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI

DATI PROGETTO ED IMPOSTAZIONI DI CALCOLO

Dati generali

Destinazione d'uso prevalente (DPR 412/93) E.4 (1) Edifici adibiti ad attività ricreative,

associative e simili: quali cinema e teatri, sale di

riunione per congressi.

Edificio pubblico o ad uso pubblico Si
Edificio situato in un centro storico No

Tipologia di calcolo Calcolo regolamentare (valutazione A1/A2)

Opzioni lavoro

Ponti termici Calcolo analitico

Resistenze liminari Appendice A UNI EN ISO 6946

Serre / locali non climatizzati

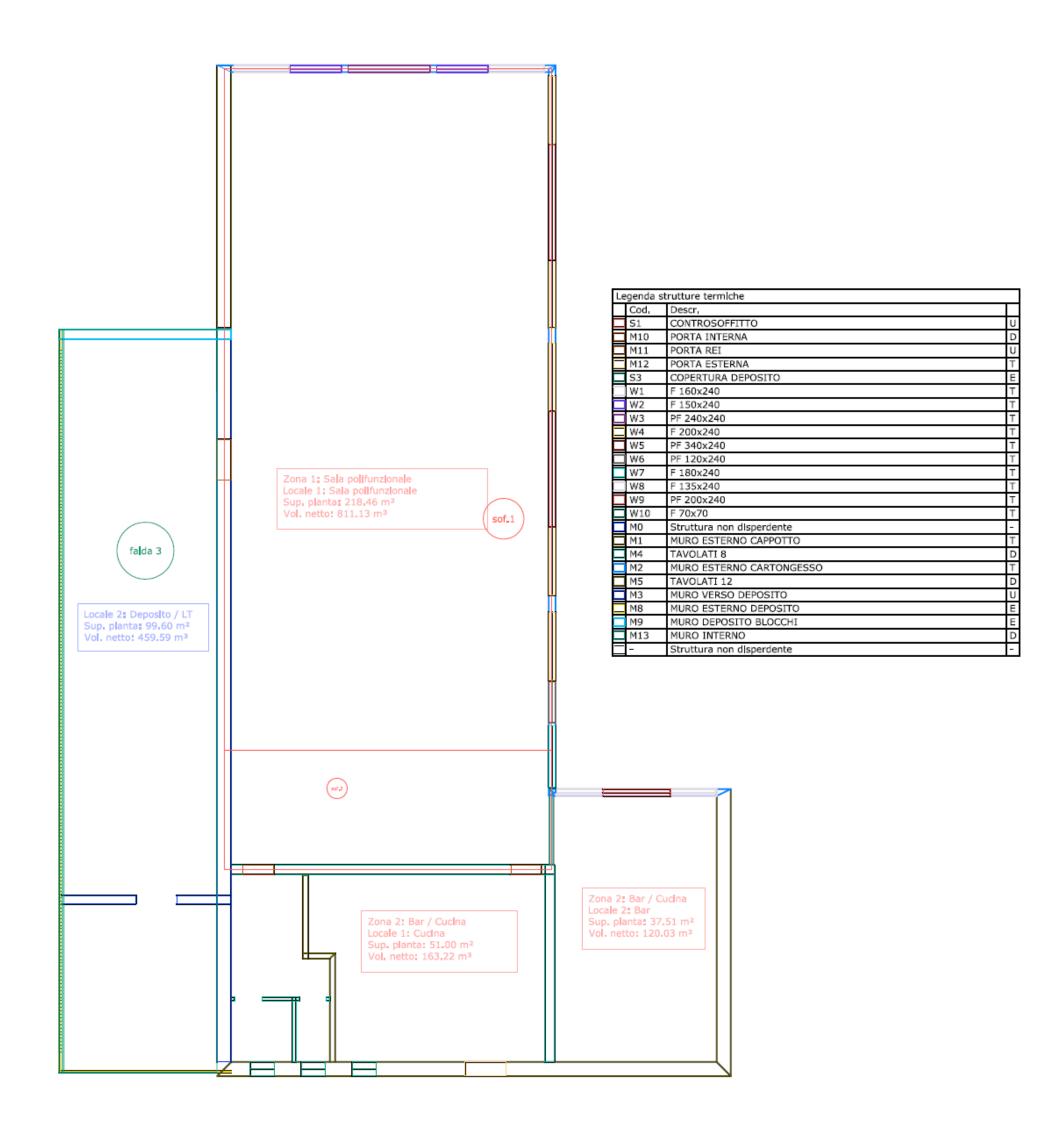
Calcolo analitico

Capacità termica

Calcolo semplificato

Calcolo manuale

Radiazione solare Calcolo con esposizioni predefinite


Opzioni di calcolo

Regime normativo UNI/TS 11300-4 e 5:2016
Rendimento globale medio stagionale FAQ ministeriali (agosto 2016)

Verifica di condensa interstiziale UNI EN ISO 13788

PLANIMETRIA ESPLICATIVA DELLE STRUTTURE OPACHE E TRASPARENTI

ELENCO COMPONENTI

<u>Muri:</u>

Cod	Tipo	Descrizione	Sp [mm]	Ms [kg/m²]	Y _{IE} [W/m ² K]	Sfasamento [h]	C _T [kJ/m²K]	ε [-]	a [-]	[°C]	Ue [W/m²K]
M1	T	MURO ESTERNO CAPPOTTO	420,0	220	0,006	-17,256	43,018	0,90	0,60	-6,0	0,155
M2	T	MURO ESTERNO CARTONGESSO	201,0	13	0,024	-13,055	84,781	0,90	0,60	-6,0	0,210
M3	U	MURO VERSO DEPOSITO	420,0	220	0,006	-17,356	43,017	0,90	0,60	-4,5	0,154
M4	D	TAVOLATI 8	110,0	62	1,741	-2,854	43,829	0,90	0,60	-	2,010
M5	D	TAVOLATI 12	150,0	86	1,306	-3,842	48,906	0,90	0,60	-	1,646
M6	E	MURO ESTERNO CAPP_ZNR	420,0	220	0,006	-17,256	43,018	0,90	0,60	-6,0	0,155
M7	E	MURO ESTERNO CG_ZNR	201,0	13	0,024	-13,055	84,781	0,90	0,60	-6,0	0,210
M8	E	MURO ESTERNO DEPOSITO	42,0	6	0,736	-0,211	2,839	0,90	0,60	-6,0	0,736
M9	E	MURO DEPOSITO BLOCCHI	280,0	218	0,088	-13,631	43,607	0,90	0,60	-6,0	0,521
M10	D	PORTA INTERNA	50,0	23	1,425	-1,454	17,390	0,90	0,60	-	1,478
M11	U	PORTA REI	80,0	33	0,532	-0,675	8,504	0,90	0,60	-4,5	0,535
M12	T	PORTA ESTERNA	80,0	33	0,546	-0,582	8,297	0,90	0,60	-6,0	0,548
M13	D	MURO INTERNO	280,0	218	0,079	-13,997	43,452	0,90	0,60	-	0,509

Pavimenti:

Cod	Tipo	Descrizione	Sp [mm]	Ms [kg/m²]	Y _{IE} [W/m²K]	Sfasamento [h]	Ст [kJ/m²K]	ε [-]	a [-]	θ [°C]	Ue [W/m²K]
P1	G	PAVIMENTO CONTROTERRA	410,0	743	0,284	-11,822	63,833	0,90	0,30	-6,0	0,448
P2	R	PAVIMENTO DEPOSITO	410,0	743	0,284	-11,822	63,833	0,90	0,30	-6,0	0,723

Soffitti:

Cod	Tipo	Descrizione	Sp [mm]	Ms [kg/m²]	Y _{IE} [W/m²K]	Sfasamento [h]	C _T [kJ/m²K]	ε [-]	a [-]	θ [°C]	Ue [W/m²K]
<i>S</i> 1	U	CONTROSOFFITTO	222,0	22	0,127	-4,398	11,046	0,90	0,30	-4,2	0,160
<i>S2</i>	E	COPERTURA ZNR	150,0	216	1,374	-4,345	89,478	0,90	0,30	-6,0	2,200
<i>S3</i>	E	COPERTURA DEPOSITO	42,0	6	0,752	-0,192	2,904	0,90	0,30	-6,0	0,753

MARAZZI ING. FULVIO - STUDIO DI INGEGNERIA VIA SANTA CHIARA, 11 - 26013 CREMA (CR)

Legenda simboli

Sp Spessore struttura

 $\begin{array}{ll} \text{Ms} & \text{Massa superficiale della struttura senza intonaci} \\ Y_{\text{IE}} & \text{Trasmittanza termica periodica della struttura} \end{array}$

Sfasamento Sfasamento dell'onda termica

C_T Capacità termica areica

E Emissività

a Fattore di assorbimento

θ Temperatura esterna o temperatura locale adiacente

Ue Trasmittanza di energia della struttura

Ponti termici:

Cod	Descrizione	Assenza di rischio formazione muffe	Ψ [W/mK]
<i>Z</i> 1	GF - Parete - Solaio controterra	X	0,024
<i>Z</i> 2	R - Parete - Copertura	X	0,002
<i>Z3</i>	R - Parete CG - Copertura	X	-0,023
<i>Z</i> 4	W - Parete - Telaio	X	0,023

Legenda simboli

Ψ Trasmittanza lineica di calcolo

Componenti finestrati:

Cod	Tipo	Descrizione	vetro	3	ggl,n	fc inv	fc est	H [cm]	L [cm]	Ug [W/m²K]	Uw [W/m²K]	θ [°C]	Agf [m²]	Lgf [m]
W1	T	F 160x240	Doppio	0,837	0,500	1,00	0,45	240,0	160,0	1,000	1,300	-6,0	2,730	6,800
W2	<i>T</i>	F 150x240	Doppio	0,837	0,500	1,00	0,45	240,0	150,0	1,000	1,300	-6,0	2,520	6,600
W3	T	PF 240x240	Doppio	0,837	0,500	1,00	0,45	240,0	240,0	1,000	1,300	-6,0	3,990	12,200
W4	T	F 200x240	Doppio	0,837	0,500	1,00	0,45	240,0	200,0	1,000	1,300	-6,0	3,570	7,600
W5	T	PF 340x240	Doppio	0,837	0,500	1,00	0,45	240,0	340,0	1,000	1,300	-6,0	6,090	14,200
W6	T	PF 120x240	Doppio	0,837	0,500	1,00	0,45	240,0	120,0	1,000	1,300	-6,0	1,890	6,000
<i>W7</i>	T	F 180x240	Doppio	0,837	0,500	1,00	0,45	240,0	180,0	1,000	1,300	-6,0	3,150	7,200
W8	T	F 135x240	Doppio	0,837	0,500	1,00	0,45	240,0	135,0	1,000	1,300	-6,0	2,205	6,300
W9	T	PF 200x240	Doppio	0,837	0,500	1,00	0,45	240,0	200,0	1,000	1,300	-6,0	3,150	11,400
W10	T	F 70x70	Doppio	0,837	0,500	0,65	0,45	70,0	70,0	1,000	1,300	-6,0	0,160	1,600

Legenda simboli

ε Emissività

ggl,n Fattore di trasmittanza solare

fc inv Fattore tendaggi (energia invernale) fc est Fattore tendaggi (energia estiva)

H Altezza L Larghezza

Ug Trasmittanza vetro

Uw Trasmittanza serramento

Agf Area del vetro

Lgf Perimetro del vetro

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI

secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

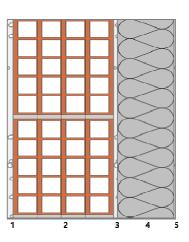
Descrizione della struttura: MURO ESTERNO CAPPOTTO

0,155 W/m²K

Spessore 420 mm

Temperatura esterna (calcolo potenza invernale) -6,0 °C

Permeanza **20,000** 10⁻¹²kg/sm²Pa


Massa superficiale (con intonaci) 269 kg/m²

Massa superficiale (senza intonaci) 220 kg/m²

Trasmittanza periodica **0,006** W/m²K

Fattore attenuazione 0,036 -

Sfasamento onda termica -17,3 h

Stratigrafia:

Trasmittanza termica

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	1	0,130	-		-
1	Intonaco di gesso e sabbia	15,00	0,8000	0,019	1600	1,00	10
2	Muratura in laterizio POROTON	250,00	0,1500	1,667	870	1,00	5
3	Intonaco di cemento e sabbia	10,00	1,0000	0,010	1800	1,00	10
4	Polistirene espanso sinterizzato (alla grafite)	140,00	0,0310	4,516	20	1,45	60
5	Klima Fix – Adesivo&Rasante da Cappotto cementizio bianco	5,00	0,4300	0,012	1420	1,00	20
-	Resistenza superficiale esterna	-	-	0,086	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m^2K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

Caratteristiche igrometriche dei componenti opachi secondo UNI EN ISO 13788

<u>Descrizione della struttura</u>: <u>MURO ESTERNO CAPPOTTO</u>

- [x] La struttura non è soggetta a fenomeni di condensa superficiale.
- [x] La struttura non è soggetta a fenomeni di condensa interstiziale.
- [] La struttura è soggetta a fenomeni di condensa interstiziale, ma la quantità è rievaporabile durante la stagione estiva.

Condizioni al contorno

Temperature e umidità relativa esterne variabili, medie mensili

Temperatura interna nel periodo di riscaldamento 20,0 °C

Umidità relativa interna costante, pari a 65 %

Verifica criticità di condensa superficiale

Verifica del rischio di condensa interstiziale (secondo UNI EN ISO 13788)

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI

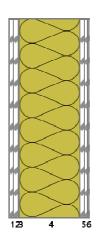
secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

Descrizione della struttura: MURO ESTERNO CARTONGESSO

Trasmittanza termica	0,210	W/m²K
----------------------	-------	-------

Spessore **201** mm

Temperatura esterna (calcolo potenza invernale) **-6,0** °C


Permeanza **0,020** 10⁻¹²kg/sm²Pa

Massa superficiale (con intonaci) 571 kg/m²

 $\begin{tabular}{ll} Massa superficiale \\ (senza intonaci) \end{tabular} & \begin{tabular}{ll} \begin{tabular}{ll} kg/m^2 \\ \end{tabular}$

Trasmittanza periodica **0,024** W/m²K

Fattore attenuazione **0,117** - Sfasamento onda termica **-13,1** h

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	1	0,130	1	1	-
1	AQUAPANEL OUTDOOR	12,50	0,3500	0,036	11150	1,00	66
2	AQUAPANEL OUTDOOR	12,50	0,3500	0,036	11150	1,00	66
3	Barriera vapore foglio di alluminio (.02505 mm)	1,00	220,000 0	0,000	2700	0,88	9999999
4	Pannello in lana di roccia – standard (perimetrali intercapedine)	150,00	0,0340	4,412	70	1,03	1
5	AQUAPANEL OUTDOOR	12,50	0,3500	0,036	11150	1,00	66
6	AQUAPANEL OUTDOOR	12,50	0,3500	0,036	11150	1,00	66
-	Resistenza superficiale esterna	-	-	0,086	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

Caratteristiche igrometriche dei componenti opachi secondo UNI EN ISO 13788

<u>Descrizione della struttura</u>: <u>MURO ESTERNO CARTONGESSO</u>

- [x] La struttura non è soggetta a fenomeni di condensa superficiale.
- [x] La struttura non è soggetta a fenomeni di condensa interstiziale.
- [] La struttura è soggetta a fenomeni di condensa interstiziale, ma la quantità è rievaporabile durante la stagione estiva.

Condizioni al contorno

Temperature e umidità relativa esterne variabili, medie mensili

Temperatura interna nel periodo di riscaldamento 20,0 °C

Umidità relativa interna costante, pari a 65 %

Verifica criticità di condensa superficiale

Verifica condensa superficiale ($f_{RSI,max} \leq f_{RSI}$)

Positiva

Mese critico

Fattore di temperatura del mese critico $f_{RSI,max}$ $f_{RSI,max}$ f_{RSI} Umidità relativa superficiale accettabile

Positiva

Positiva

0,817

Fattore di temperatura del componente f_{RSI} 0,948

0,948

Verifica del rischio di condensa interstiziale (secondo UNI EN ISO 13788)

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI

secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

Descrizione della struttura: MURO VERSO DEPOSITO

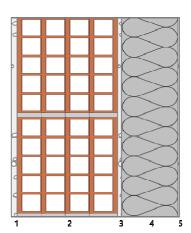
Trasmittanza termica	0,154	W/m ² K
----------------------	-------	--------------------

Spessore	420	mm
Temperatura esterna	-4,5	°C

(calcolo potenza invernale)

Permeanza

20,000


10⁻¹²kg/sm²Pa

Massa superficiale (con intonaci) 269 kg/m²

Massa superficiale (senza intonaci) 220 kg/m²

Trasmittanza periodica **0,006** W/m²K

Fattore attenuazione **0,036** - Sfasamento onda termica **-17,4** h

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-		0,130	-		
1	Intonaco di gesso e sabbia	15,00	0,8000	0,019	1600	1,00	10
2	Muratura in laterizio POROTON	250,00	0,1500	1,667	870	1,00	5
3	Intonaco di cemento e sabbia	10,00	1,0000	0,010	1800	1,00	10
4	Polistirene espanso sinterizzato (alla grafite)	140,00	0,0310	4,516	20	1,45	60
5	Klima Fix – Adesivo&Rasante da Cappotto cementizio bianco	5,00	0,4300	0,012	1420	1,00	20
-	Resistenza superficiale esterna	-	-	0,130	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	k]/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

Caratteristiche igrometriche dei componenti opachi secondo UNI EN ISO 13788

Descrizione della struttura: MURO VERSO DEPOSITO

- [x] La struttura non è soggetta a fenomeni di condensa superficiale.
- [x] La struttura non è soggetta a fenomeni di condensa interstiziale.
- [] La struttura è soggetta a fenomeni di condensa interstiziale, ma la quantità è rievaporabile durante la stagione estiva.

Condizioni al contorno

Temperature e umidità relativa esterne variabili, medie mensili

Temperatura interna nel periodo di riscaldamento 20,0 °C

Umidità relativa interna costante, pari a 65 %

Verifica criticità di condensa superficiale

Verifica del rischio di condensa interstiziale (secondo UNI EN ISO 13788)

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI

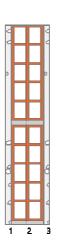
secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

Descrizione della struttura: TAVOLATI 8

Trasmittanza termica **2,010** W/m²K

Spessore **110** mm

Permeanza 196,07 10⁻¹²kg/sm²Pa


 $\begin{tabular}{ll} Massa superficiale & & & \mbox{\bf 110} & kg/m^2 \\ (con intonaci) & & \mbox{\bf kg/m^2} \\ \end{tabular}$

Massa superficiale (senza intonaci) **62** kg/m²

Trasmittanza periodica **1,741** W/m²K

Fattore attenuazione **0,866** -

Sfasamento onda termica -2,9 h

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-		0,130	-		
1	Intonaco di gesso e sabbia	15,00	0,8000	0,019	1600	1,00	10
2	Mattone forato	80,00	0,4000	0,200	775	0,84	9
3	Intonaco di gesso e sabbia	15,00	0,8000	0,019	1600	1,00	10
-	Resistenza superficiale esterna	-	-	0,130	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m ² K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI

secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

Descrizione della struttura: TAVOLATI 12

Trasmittanza termica **1,646** W/m²K

Spessore 150 mm

Permeanza 144,92 10⁻¹²kg/sm²Pa

Massa superficiale (con intonaci) 134 kg/m²

Massa superficiale

(senza intonaci) 86 kg/m²

Trasmittanza periodica **1,306** W/m²K

Fattore attenuazione **0,794**

Sfasamento onda termica -3,8 h

Stratigrafia:

N.	Descrizione strato	S	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	•		0,130		1	
1	Intonaco di gesso e sabbia	15,00	0,8000	0,019	1600	1,00	10
2	Mattone forato	120,00	0,3870	0,310	717	0,84	9
3	Intonaco di gesso e sabbia	15,00	0,8000	0,019	1600	1,00	10
-	Resistenza superficiale esterna	-	-	0,130	-	-	-

Legenda simboli

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m ² K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
D 1/	Fatters di registeres alle diffusione del vancre in consequents	

R.V. Fattore di resistenza alla diffusione del vapore in capo asciutto

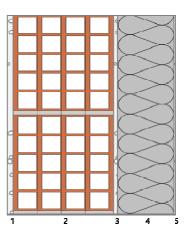
CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI **OPACHI**

secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

Descrizione della struttura: MURO ESTERNO CAPP_ZNR

Trasmittanza termica	0,155	W/m ² K
----------------------	-------	--------------------

420 mm Spessore Temperatura esterna -6,0 °C (calcolo potenza invernale)


20,000 10⁻¹²kg/sm²Pa Permeanza

Massa superficiale **269** kg/m² (con intonaci)

Massa superficiale 220 kg/m² (senza intonaci)

0,006 W/m²K Trasmittanza periodica

0,036 Fattore attenuazione **-17,3** h Sfasamento onda termica

Stratigrafia:

N.	Descrizione strato	S	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-		0,130			
1	Intonaco di gesso e sabbia	15,00	0,8000	0,019	1600	1,00	10
2	Muratura in laterizio POROTON	250,00	0,1500	1,667	870	1,00	5
3	Intonaco di cemento e sabbia	10,00	1,0000	0,010	1800	1,00	10
4	Polistirene espanso sinterizzato (alla grafite)	140,00	0,0310	4,516	20	1,45	60
5	Klima Fix – Adesivo&Rasante da Cappotto cementizio bianco	5,00	0,4300	0,012	1420	1,00	20
-	Resistenza superficiale esterna	-	-	0,086	-	-	-

Legenda simboli

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
D V	Fattore di resistenza alla diffusione del vanore in cano asciutto	_

Fattore di resistenza alla diffusione del vapore in capo asciutto

Caratteristiche igrometriche dei componenti opachi secondo UNI EN ISO 13788

<u>Descrizione della struttura</u>: <u>MURO ESTERNO CAPP_ZNR</u>

- $[{m x}]$ La struttura non è soggetta a fenomeni di condensa superficiale.
- [x] La struttura non è soggetta a fenomeni di condensa interstiziale.
- [] La struttura è soggetta a fenomeni di condensa interstiziale, ma la quantità è rievaporabile durante la stagione estiva.

Condizioni al contorno

Temperature e umidità relativa esterne variabili, medie mensili

Temperatura interna nel periodo di riscaldamento 20,0 °C

Umidità relativa interna costante, pari a 65 %

Verifica criticità di condensa superficiale

Verifica del rischio di condensa interstiziale (secondo UNI EN ISO 13788)

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI

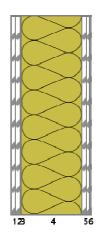
secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

Descrizione della struttura: MURO ESTERNO CG_ZNR

Trasmittanza termica	0,210	W/m²K
----------------------	-------	-------

Spessore **201** mm

Temperatura esterna (calcolo potenza invernale) **-6,0** °C


Permeanza **0,020** 10⁻¹²kg/sm²Pa

Massa superficiale (con intonaci) 571 kg/m²

 $\begin{tabular}{ll} Massa superficiale \\ (senza intonaci) \end{tabular} & \begin{tabular}{ll} \begin{tabular}{ll} $\textbf{kg/m}^2$ \\ \end{tabular}$

Trasmittanza periodica **0,024** W/m²K

Fattore attenuazione **0,117** - Sfasamento onda termica **-13,1** h

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	1	0,130	1	1	-
1	AQUAPANEL OUTDOOR	12,50	0,3500	0,036	11150	1,00	66
2	AQUAPANEL OUTDOOR	12,50	0,3500	0,036	11150	1,00	66
3	Barriera vapore foglio di alluminio (.02505 mm)	1,00	220,000 0	0,000	2700	0,88	9999999
4	Pannello in lana di roccia – standard (perimetrali intercapedine)	150,00	0,0340	4,412	70	1,03	1
5	AQUAPANEL OUTDOOR	12,50	0,3500	0,036	11150	1,00	66
6	AQUAPANEL OUTDOOR	12,50	0,3500	0,036	11150	1,00	66
-	Resistenza superficiale esterna	-	-	0,086	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

Caratteristiche igrometriche dei componenti opachi secondo UNI EN ISO 13788

<u>Descrizione della struttura</u>: <u>MURO ESTERNO CG_ZNR</u>

Codice: M7

- [x] La struttura non è soggetta a fenomeni di condensa superficiale.
- [x] La struttura non è soggetta a fenomeni di condensa interstiziale.
- La struttura è soggetta a fenomeni di condensa interstiziale, ma la quantità è rievaporabile durante la stagione estiva.

Condizioni al contorno

Temperature e umidità relativa esterne variabili, medie mensili

Temperatura interna nel periodo di riscaldamento	20,0	°C
Umidità relativa interna costante, pari a	65	%

Verifica criticità di condensa superficiale

Verifica condensa superficiale ($f_{RSI,max} \le f_{RSI}$)		Positiva	
Mese critico		gennaio	
Fattore di temperatura del mese critico	$f_{\text{RSI},\text{max}}$	0,817	
Fattore di temperatura del componente	f_{RSI}	0,948	
Umidità relativa superficiale accettabile		80	%

Verifica del rischio di condensa interstiziale (secondo UNI EN ISO 13788)

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI

secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

Descrizione della struttura: MURO ESTERNO DEPOSITO

0,736 W/m²K Trasmittanza termica Spessore 42 mm Temperatura esterna -6,0 °C (calcolo potenza invernale) **0,010** 10⁻¹²kg/sm²Pa Permeanza Massa superficiale kg/m² (con intonaci) Massa superficiale kg/m² (senza intonaci) Trasmittanza periodica 0,736 W/m²K Fattore attenuazione 0,999 Sfasamento onda termica **-0,2** h

Stratigrafia:

N.	Descrizione strato	S	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	-	0,130	-	-	-
1	Alluminio	1,00	220,000 0	0,000	2700	0,88	9999999
2	Schiuma poliuretanica (celle chiuse < 90%)	40,00	0,0350	1,143	20	1,40	60
3	Alluminio	1,00	220,000 0	0,000	2700	0,88	9999999
-	Resistenza superficiale esterna	-	-	0,086	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

Caratteristiche igrometriche dei componenti opachi secondo UNI EN ISO 13788

<u>Descrizione della struttura</u>: <u>MURO ESTERNO DEPOSITO</u>

- [x] La struttura non è soggetta a fenomeni di condensa superficiale.
- [] La struttura non è soggetta a fenomeni di condensa interstiziale.
- [x] La struttura è soggetta a fenomeni di condensa interstiziale, ma la quantità è rievaporabile durante la stagione estiva.

Condizioni al contorno

Temperature e umidità relativa esterne variabili, medie mensili

Temperatura interna nel periodo di riscaldamento 20,0 °C

Umidità relativa interna costante, pari a 65 %

Verifica criticità di condensa superficiale

Verifica condensa superficiale ($f_{RSI,max} \leq f_{RSI}$)

Positiva

Mese critico

Fattore di temperatura del mese critico $f_{RSI,max}$ $f_{RSI,max}$ f_{RSI} Umidità relativa superficiale accettabile

Positiva

Positiva $f_{RSI,max}$ f_{RSI} f_{RSI} f_{RSI} f_{RSI} f_{RSI} f_{RSI} f_{RSI} f_{RSI} f_{RSI}

Verifica del rischio di condensa interstiziale (secondo UNI EN ISO 13788)

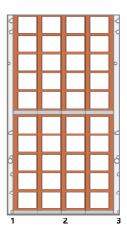
Verifica condensa interstiziale **Positiva** g/m² Quantità massima di condensa durante l'anno 0 M_a Quantità di condensa ammissibile M_{lim} 16 g/m² Verifica di condensa ammissibile (Ma ≤ M_{lim}) **Positiva** Mese con massima condensa accumulata marzo L'evaporazione a fine stagione è Completa

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI **OPACHI**

secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

Descrizione della struttura: MURO DEPOSITO BLOCCHI

i rasmittanza termica	0,521	W/III-K


Spessore **280** mm Temperatura esterna °C -6,0 (calcolo potenza invernale)

129,03 10⁻¹²kg/sm²Pa Permeanza

Massa superficiale **266** kg/m² (con intonaci) Massa superficiale **218** kg/m²

0,088 W/m²K Trasmittanza periodica

Fattore attenuazione **0,170** -Sfasamento onda termica **-13,6** h

Stratigrafia:

(senza intonaci)

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna			0,130			
1	Intonaco di calce e sabbia	15,00	0,8000	0,019	1600	1,00	10
2	Muratura in laterizio POROTON	250,00	0,1500	1,667	870	1,00	5
3	Intonaco di calce e sabbia	15,00	0,8000	0,019	1600	1,00	10
-	Resistenza superficiale esterna			0,086			-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	_

Caratteristiche igrometriche dei componenti opachi secondo UNI EN ISO 13788

<u>Descrizione della struttura</u>: <u>MURO DEPOSITO BLOCCHI</u>

- [x] La struttura non è soggetta a fenomeni di condensa superficiale.
- [] La struttura non è soggetta a fenomeni di condensa interstiziale.
- [x] La struttura è soggetta a fenomeni di condensa interstiziale, ma la quantità è rievaporabile durante la stagione estiva.

Condizioni al contorno

Temperature e umidità relativa esterne variabili, medie mensili

Temperatura interna nel periodo di riscaldamento 20,0 °C

Umidità relativa interna costante, pari a 65 %

Verifica criticità di condensa superficiale

Verifica condensa superficiale ($f_{RSI,max} \leq f_{RSI}$)

Positiva

Mese critico

Fattore di temperatura del mese critico $f_{RSI,max}$ $f_{RSI,max}$ f_{RSI} Umidità relativa superficiale accettabile

Positiva

Positiva $f_{RSI,max}$ f_{RSI} f_{RSI}

Verifica del rischio di condensa interstiziale (secondo UNI EN ISO 13788)

Verifica condensa interstiziale **Positiva** g/m² Quantità massima di condensa durante l'anno 61 M_a Quantità di condensa ammissibile M_{lim} 100 g/m² Verifica di condensa ammissibile (Ma ≤ M_{lim}) **Positiva** Mese con massima condensa accumulata gennaio L'evaporazione a fine stagione è Completa

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI

secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

Descrizione della struttura: PORTA INTERNA

Trasmittanza termica **1,478** W/m²K

Spessore 50 mm

Permeanza **6,400** 10⁻¹²kg/sm²Pa


Massa superficiale (con intonaci) $\begin{tabular}{ll} \bf 23 & kg/m^2 \\ \end{tabular}$

Massa superficiale (senza intonaci) 23 kg/m²

Trasmittanza periodica **1,425** W/m²K

Fattore attenuazione **0,964**

Sfasamento onda termica -1,5 h

Stratigrafia:

N.	Descrizione strato	S	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	•	0,130	-	-	
1	Legno di abete flusso perpend. Alle fibre	50,00	0,1200	0,417	450	1,60	625
-	Resistenza superficiale esterna	-	-	0,130	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI

secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

Descrizione della struttura: PORTA REI

Trasmittanza termica	0,535	W/m ² K	
Spessore	80	mm	
Temperatura esterna (calcolo potenza invernale)	-4,5	°C	
Permeanza	0,005	10 ⁻¹² kg/sm²Pa	
Massa superficiale (con intonaci)	33	kg/m²	
Massa superficiale (senza intonaci)	33	kg/m²	
			\bowtie

Trasmittanza periodica **0,532** W/m²K

Fattore attenuazione **0,994** - Sfasamento onda termica **-0,7** h

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	-	0,130	-	-	
1	Acciaio inossidabile, austenitico	2,00	17,0000	0,000	7900	0,50	9999999
2	Intercapedine non ventilata Av<500 mm²/m	26,00	0,1444	0,180	-	-	-
3	Schiuma poliuretanica (celle chiuse < 90%)	50,00	0,0350	1,429	20	1,40	60
4	Acciaio inossidabile, austenitico	2,00	17,0000	0,000	7900	0,50	9999999
-	Resistenza superficiale esterna	-	-	0,130	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

Caratteristiche igrometriche dei componenti opachi secondo UNI EN ISO 13788

<u>Descrizione della struttura</u>: PORTA REI Codice: M11

- [x] La struttura non è soggetta a fenomeni di condensa superficiale.
- [] La struttura non è soggetta a fenomeni di condensa interstiziale.
- [x] La struttura è soggetta a fenomeni di condensa interstiziale, ma la quantità è rievaporabile durante la stagione estiva.

Condizioni al contorno

Temperature e umidità relativa esterne variabili, medie mensili

Temperatura interna nel periodo di riscaldamento 20,0 °C

Umidità relativa interna costante, pari a 65 %

Verifica criticità di condensa superficiale

Verifica condensa superficiale ($f_{RSI,max} \leq f_{RSI}$)

Positiva

Mese critico

Fattore di temperatura del mese critico

Fattore di temperatura del componente $f_{RSI,max}$ 0,806Fattore di temperatura del componente f_{RSI} 0,881Umidità relativa superficiale accettabile

80 %

Verifica del rischio di condensa interstiziale (secondo UNI EN ISO 13788)

Verifica condensa interstiziale **Positiva** Quantità massima di condensa durante l'anno 0 g/m² M_a Quantità di condensa ammissibile M_{lim} 20 g/m² Verifica di condensa ammissibile (Ma ≤ M_{lim}) **Positiva** Mese con massima condensa accumulata febbraio L'evaporazione a fine stagione è Completa

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI

secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

Descrizione della struttura: PORTA ESTERNA

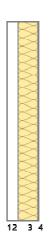
Trasmittanza termica **0,548** W/m²K

Spessore **80** mm

Temperatura esterna (calcolo potenza invernale) **-6,0** °C

Permeanza **0,005** 10⁻¹²kg/sm²Pa

Massa superficiale (con intonaci)


Massa superficiale (senza intonaci)

33 kg/m²

kg/m²

Trasmittanza periodica **0,546** W/m²K

Fattore attenuazione **0,996** - Sfasamento onda termica **-0,6** h

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	-	0,130	1	-	-
1	Acciaio inossidabile, austenitico	2,00	17,0000	0,000	7900	0,50	9999999
2	Intercapedine non ventilata Av<500 mm²/m	26,00	0,1444	0,180		-	-
3	Schiuma poliuretanica (celle chiuse < 90%)	50,00	0,0350	1,429	20	1,40	60
4	Acciaio inossidabile, austenitico	2,00	17,0000	0,000	7900	0,50	9999999
-	Resistenza superficiale esterna	-	-	0,086	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

Caratteristiche igrometriche dei componenti opachi secondo UNI EN ISO 13788

<u>Descrizione della struttura</u>: PORTA ESTERNA Codice: M12

- [x] La struttura non è soggetta a fenomeni di condensa superficiale.
- [] La struttura non è soggetta a fenomeni di condensa interstiziale.
- [x] La struttura è soggetta a fenomeni di condensa interstiziale, ma la quantità è rievaporabile durante la stagione estiva.

Condizioni al contorno

Temperature e umidità relativa esterne variabili, medie mensili

Temperatura interna nel periodo di riscaldamento 20,0 °C

Umidità relativa interna costante, pari a 65 %

Verifica criticità di condensa superficiale

Verifica condensa superficiale ($f_{RSI,max} \leq f_{RSI}$)

Positiva

Mese critico

Fattore di temperatura del mese critico $f_{RSI,max}$ $f_{RSI,max}$ f_{RSI} Umidità relativa superficiale accettabile

Positiva

Positiva $f_{RSI,max}$ f_{RSI} f_{RSI} f_{RSI} f_{RSI} f_{RSI} f_{RSI} f_{RSI} f_{RSI} f_{RSI}

Verifica del rischio di condensa interstiziale (secondo UNI EN ISO 13788)

Verifica condensa interstiziale **Positiva** g/m² Quantità massima di condensa durante l'anno 0 M_a Quantità di condensa ammissibile M_{lim} 20 g/m² Verifica di condensa ammissibile (Ma ≤ M_{lim}) **Positiva** Mese con massima condensa accumulata marzo L'evaporazione a fine stagione è Completa

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI

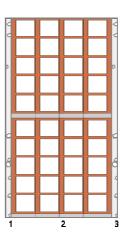
secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

Descrizione della struttura: MURO INTERNO

Trasmittanza termica **0,509** W/m²K

Spessore 280 mm

Permeanza 129,03 10⁻¹²kg/sm²Pa


Massa superficiale (con intonaci) $\begin{tabular}{ll} \bf 266 & kg/m^2 \\ \end{tabular}$

Massa superficiale (senza intonaci) 218 kg/m²

Trasmittanza periodica **0,079** W/m²K

Fattore attenuazione **0,155** -

Sfasamento onda termica -14,0 h

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-		0,130	-		
1	Intonaco di gesso e sabbia	15,00	0,8000	0,019	1600	1,00	10
2	Muratura in laterizio POROTON	250,00	0,1500	1,667	870	1,00	5
3	Intonaco di gesso e sabbia	15,00	0,8000	0,019	1600	1,00	10
-	Resistenza superficiale esterna	-	_	0,130	-	_	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m ² K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	=

Codice: P1

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI

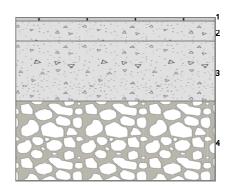
secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

Descrizione della struttura: PAVIMENTO CONTROTERRA

Trasmittanza termica **1,704** W/m²K
Trasmittanza controterra **0,448** W/m²K

Spessore 410 mm

Temperatura esterna (calcolo potenza invernale) -6,0 °C


Permeanza **18,182** 10⁻¹²kg/sm²Pa

Massa superficiale (con intonaci) 743 kg/m²

Massa superficiale (senza intonaci) 743 kg/m²

Trasmittanza periodica **0,284** W/m²K

Fattore attenuazione **0,634** - Sfasamento onda termica **-11,8** h

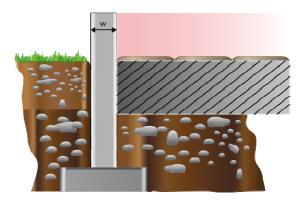
Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	•	0,170	•	1	-
1	Piastrelle in ceramica	10,00	1,0000	0,010	2300	0,84	200
2	Massetto ripartitore in calcestruzzo con rete	50,00	1,4900	0,034	2200	0,88	70
3	Sottofondo di cemento magro	150,00	0,9000	0,167	1800	0,88	30
4	Ghiaia grossa senza argilla (um. 5%)	200,00	1,2000	0,167	1700	1,00	5
-	Resistenza superficiale esterna	-	-	0,040	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m^2K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

Codice: P1

CALCOLO DELLA TRASMITTANZA CONTROTERRA secondo UNI EN ISO 13370


Pavimento appoggiato su terreno:

PAVIMENTO CONTROTERRA

Area del pavimento 315,00 m²
Perimetro disperdente del pavimento 87,00 m

Spessore pareti perimetrali esterne 420 mm

Conduttività termica del terreno 2,00 W/mK

Caratteristiche igrometriche dei componenti opachi secondo UNI EN ISO 13788

<u>Descrizione della struttura</u>: <u>PAVIMENTO CONTROTERRA</u> Codice: <u>P1</u>

- [] La struttura non è soggetta a fenomeni di condensa superficiale.
- [x] La struttura non è soggetta a fenomeni di condensa interstiziale.
- [] La struttura è soggetta a fenomeni di condensa interstiziale, ma la quantità è rievaporabile durante la stagione estiva.

Condizioni al contorno

Temperature e umidità relativa esterne variabili, medie mensili

Temperatura interna nel periodo di riscaldamento 20,0 °C

Umidità relativa interna costante, pari a 65 %

Verifica criticità di condensa superficiale

Verifica condensa superficiale $(f_{RSI,max} \leq f_{RSI})$ **Negativa**Mese critico **febbraio**Fattore di temperatura del mese critico $f_{RSI,max}$ **0,742**Fattore di temperatura del componente f_{RSI} **0,625**Umidità relativa superficiale accettabile **80** %

Verifica del rischio di condensa interstiziale (secondo UNI EN ISO 13788)

Codice: P2

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI

secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

Descrizione della struttura: PAVIMENTO DEPOSITO

Trasmittanza termica **1,704** W/m²K
Trasmittanza controterra **0,723** W/m²K

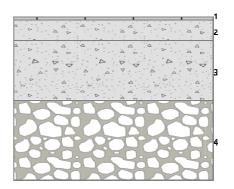
Spessore 410 mm

Temperatura esterna -6,0 °C

(calcolo potenza invernale)

Permeanza

18,182


10⁻¹²kg/sm²Pa

Massa superficiale (con intonaci) 743 kg/m²

Massa superficiale (senza intonaci) 743 kg/m²

Trasmittanza periodica **0,284** W/m²K

Fattore attenuazione **0,393** - Sfasamento onda termica **-11,8** h

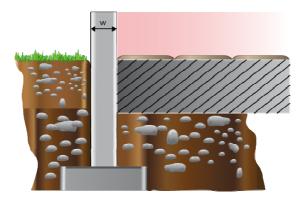
Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-		0,170			-
1	Piastrelle in ceramica	10,00	1,0000	0,010	2300	0,84	200
2	Massetto ripartitore in calcestruzzo con rete	50,00	1,4900	0,034	2200	0,88	70
3	Sottofondo di cemento magro	150,00	0,9000	0,167	1800	0,88	30
4	Ghiaia grossa senza argilla (um. 5%)	200,00	1,2000	0,167	1700	1,00	5
-	Resistenza superficiale esterna	-	-	0,040	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

Codice: P2

CALCOLO DELLA TRASMITTANZA CONTROTERRA secondo UNI EN ISO 13370


Pavimento appoggiato su terreno:

PAVIMENTO DEPOSITO

Area del pavimento 99,00 m²
Perimetro disperdente del pavimento 52,00 m

Spessore pareti perimetrali esterne 42 mm

Conduttività termica del terreno 2,00 W/mK

Caratteristiche igrometriche dei componenti opachi secondo UNI EN ISO 13788

<u>Descrizione della struttura</u>: <u>PAVIMENTO DEPOSITO</u> Codice: <u>P2</u>

- [] La struttura non è soggetta a fenomeni di condensa superficiale.
- [x] La struttura non è soggetta a fenomeni di condensa interstiziale.
- [] La struttura è soggetta a fenomeni di condensa interstiziale, ma la quantità è rievaporabile durante la stagione estiva.

Condizioni al contorno

Temperature e umidità relativa esterne variabili, medie mensili

Temperatura interna nel periodo di riscaldamento	20,0	°C
Umidità relativa interna costante, pari a	65	%

Verifica criticità di condensa superficiale

Verifica condensa superficiale ($f_{RSI,max} \leq f_{RSI}$)		Negativa	
Mese critico		febbraio	
Fattore di temperatura del mese critico	$f_{\text{RSI},\text{max}}$	0,742	
Fattore di temperatura del componente	f_{RSI}	0,625	
Umidità relativa superficiale accettabile		80	%

Verifica del rischio di condensa interstiziale (secondo UNI EN ISO 13788)

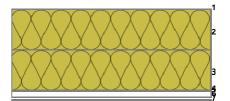
Codice: 51

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI

secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

Descrizione della struttura: CONTROSOFFITTO

Trasmittanza termica **0,160** W/m²K


Spessore 222 mm

Temperatura esterna (calcolo potenza invernale) -4,2 °C

Permeanza **0,010** 10⁻¹²kg/sm²Pa

Trasmittanza periodica **0,127** W/m²K

Fattore attenuazione **0,794** - Sfasamento onda termica **-4,4** h

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale esterna	-	-	0,100	-	-	-
1	Barriera vapore in fogli di P.V.C.	1,00	0,1600	0,006	1390	0,90	50000
2	Pannello in lana di roccia – standard (perimetrali intercapedine)	100,00	0,0340	2,941	70	1,03	1
3	Pannello in lana di roccia – standard (perimetrali intercapedine)	100,00	0,0340	2,941	70	1,03	1
4	Barriera vapore in fogli di P.V.C.	1,00	0,1600	0,006	1390	0,90	50000
5	Alluminio	1,00	220,000 0	0,000	2700	0,88	9999999
6	Intercapedine non ventilata Av<500 mm²/m	18,00	0,1125	0,160	-	-	-
7	Alluminio	1,00	220,000 0	0,000	2700	0,88	9999999
-	Resistenza superficiale interna	_	-	0,100	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	_

Caratteristiche igrometriche dei componenti opachi secondo UNI EN ISO 13788

<u>Descrizione della struttura</u>: <u>CONTROSOFFITTO</u> Codice: <u>S1</u>

- [x] La struttura non è soggetta a fenomeni di condensa superficiale.
- [x] La struttura non è soggetta a fenomeni di condensa interstiziale.
- [] La struttura è soggetta a fenomeni di condensa interstiziale, ma la quantità è rievaporabile durante la stagione estiva.

Condizioni al contorno

Temperature e umidità relativa esterne variabili, medie mensili

Temperatura interna nel periodo di riscaldamento 20,0 °C

Umidità relativa interna costante, pari a 65 %

Verifica criticità di condensa superficiale

Verifica del rischio di condensa interstiziale (secondo UNI EN ISO 13788)

Codice: 52

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI

secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

Descrizione della struttura: COPERTURA ZNR

Trasmittanza termica **2,200** W/m²K

Spessore **150** mm Temperatura esterna

(calcolo potenza invernale) -6,0 °C

Permeanza **20,597** 10⁻¹²kg/sm²Pa

Massa superficiale (con intonaci) 216 kg/m²

Massa superficiale (senza intonaci) 216 kg/m²

Trasmittanza periodica **1,374** W/m²K

Fattore attenuazione **0,624** - Sfasamento onda termica **-4,3** h

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale esterna	-		0,086	-		
1	Lastre ondulate fibrocemento	10,00	0,3400	0,029	1625	1,00	10
2	Intercapedine non ventilata Av<500 mm²/m	40,00	0,2500	0,160	-		
3	C.l.s. di sabbia e ghiaia (pareti esterne)	100,00	1,2600	0,079	2000	1,00	96
-	Resistenza superficiale interna	-	-	0,100	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

Caratteristiche igrometriche dei componenti opachi secondo UNI EN ISO 13788

<u>Descrizione della struttura</u>: COPERTURA ZNR Codice: S2

- [] La struttura non è soggetta a fenomeni di condensa superficiale.
- [x] La struttura non è soggetta a fenomeni di condensa interstiziale.
- [] La struttura è soggetta a fenomeni di condensa interstiziale, ma la quantità è rievaporabile durante la stagione estiva.

Condizioni al contorno

Temperature e umidità relativa esterne variabili, medie mensili

Temperatura interna nel periodo di riscaldamento	20,0	°C
Umidità relativa interna costante, pari a	65	%

Verifica criticità di condensa superficiale

Verifica condensa superficiale (frsi,max ≤ frsi)	•		
Mese critico	9	gennaio	
Fattore di temperatura del mese critico	$f_{\text{RSI},\text{max}}$	0,817	
Fattore di temperatura del componente	f_{RSI}	0,553	
Umidità relativa superficiale accettabile		80	%

Verifica del rischio di condensa interstiziale (secondo UNI EN ISO 13788)

Non si verifica formazione di condensa interstiziale nella struttura durante tutto l'arco dell'anno.

Codice: 53

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI

secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

Descrizione della struttura: COPERTURA DEPOSITO

Trasmittanza termica **0,753** W/m²K

Spessore 42 mm

Temperatura esterna (calcolo potenza invernale) -6,0 °C

Permeanza **0,010** 10⁻¹²kg/sm²Pa

Massa superficiale (con intonaci) 6 kg/m²

Massa superficiale (senza intonaci) 6 kg/m²

Trasmittanza periodica **0,752** W/m²K

Fattore attenuazione **1,000** - Sfasamento onda termica **-0,2** h

Stratigrafia:

N.	Descrizione strato	S	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale esterna	-	-	0,086	1	1	-
1	Alluminio	1,00	220,000 0	0,000	2700	0,88	9999999
2	Schiuma poliuretanica (celle chiuse < 90%)	40,00	0,0350	1,143	20	1,40	60
3	Alluminio	1,00	220,000 0	0,000	2700	0,88	9999999
-	Resistenza superficiale interna	-	-	0,100	i	ı	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

Codice: 53

Caratteristiche igrometriche dei componenti opachi secondo UNI EN ISO 13788

<u>Descrizione della struttura</u>: <u>COPERTURA DEPOSITO</u>

- [x] La struttura non è soggetta a fenomeni di condensa superficiale.
- [] La struttura non è soggetta a fenomeni di condensa interstiziale.
- [x] La struttura è soggetta a fenomeni di condensa interstiziale, ma la quantità è rievaporabile durante la stagione estiva.

Condizioni al contorno

Temperature e umidità relativa esterne variabili, medie mensili

Temperatura interna nel periodo di riscaldamento **20,0** °C Umidità relativa interna costante, pari a **65** %

Verifica criticità di condensa superficiale

L'evaporazione a fine stagione è

Verifica condensa superficiale ($f_{RSI,max} \leq f_{RSI}$)

Positiva

Mese critico

Fattore di temperatura del mese critico $f_{RSI,max}$ $f_{RSI,max}$ f_{RSI} Umidità relativa superficiale accettabile

Positiva

Positiva $f_{RSI,max}$ f_{RSI} f_{RSI} f_{RSI} f_{RSI} f_{RSI} f_{RSI} f_{RSI} f_{RSI} f_{RSI}

Verifica del rischio di condensa interstiziale (secondo UNI EN ISO 13788)

Verifica condensa interstiziale
Quantità massima di condensa durante l'anno
Quantità di condensa ammissibile
Verifica di condensa ammissibile
Mim M_a M_b M_b

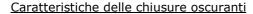
Completa

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 – UNI EN ISO 6946 – UNI EN ISO 10077

Descrizione della finestra: F 160x240

Codice: W1

Tipologia di serramento -


Classe di permeabilità

Classe 4 secondo Norma
UNI EN 12207

Trasmittanza termica U_w **1,300** W/m²K Trasmittanza solo vetro U_g **1,000** W/m²K

Dati per il calcolo degli apporti solari

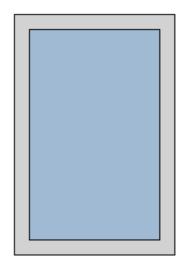
Emissività $\epsilon \qquad \textbf{0,837} \quad -$ Fattore tendaggi (invernale) $f_{c \text{ inv}} \qquad \textbf{1,00} \quad -$ Fattore tendaggi (estivo) $f_{c \text{ est}} \qquad \textbf{0,45} \quad -$ Fattore di trasmittanza solare $g_{gl,n} \qquad \textbf{0,500} \quad -$ Fattore trasmissione solare totale $g_{gl+sh} \qquad \textbf{0,491} \quad -$

Resistenza termica chiusure 0,00 m²K/W f shut 0,0 -

Dimensioni del serramento

Larghezza **160,0** cm Altezza **240,0** cm

Caratteristiche del telaio


K distanziale K_d 0,03 W/mK Area totale A_{w} 3,840 m^2 Area vetro 2,730 m^2 A_q Area telaio 1,110 A_f Fattore di forma F_f 0,71 Perimetro vetro 6,800 m Perimetro telaio 8,000

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,310 W/m²K

Ponte termico del serramento

Ponte termico associato ${\it Z4}$ ${\it W}$ - ${\it Parete}$ - ${\it Telaio}$ Trasmittanza termica lineica Ψ ${\it 0,023}$ W/mK Lunghezza perimetrale ${\it 1,60}$ m

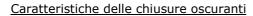
CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: F 150x240

Codice: W2

Caratteristiche del serramento

Tipologia di serramento


Classe 4 secondo Norma Classe di permeabilità **UNI EN 12207**

Trasmittanza termica U_w

1,300 W/m²K Trasmittanza solo vetro U_q **1,000** W/m²K

Dati per il calcolo degli apporti solari

Emissività ۶ 0,837 Fattore tendaggi (invernale) 1,00 $f_{c inv}$ Fattore tendaggi (estivo) $f_{c \; est}$ 0,45 Fattore di trasmittanza solare 0,500 $g_{gl,n}$ Fattore trasmissione solare totale 0,491 g_{ql+sh}

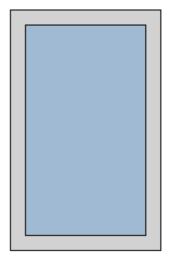
Resistenza termica chiusure 0,00 m²K/W

f shut 0,0

Dimensioni del serramento

Larghezza *150,0* cm Altezza **240,0** cm

Caratteristiche del telaio


K distanziale	K_d	0,03	W/mK
Area totale	A_{w}	3,600	m^2
Area vetro	A_{g}	2,520	m^2
Area telaio	A_f	1,080	m^2
Fattore di forma	F_f	0,70	-
Perimetro vetro	L_g	6,600	m
Perimetro telaio	L_f	7,800	m

Caratteristiche del modulo

Trasmittanza termica del modulo **1,310** W/m²K

Ponte termico del serramento

Ponte termico associato **Z4** W - Parete - Telaio Trasmittanza termica lineica **0,023** W/mK Lunghezza perimetrale 1,50 m

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 – UNI EN ISO 6946 – UNI EN ISO 10077

Descrizione della finestra: PF 240x240

Codice: W3

Caratteristiche del serramento

Tipologia di serramento

Classe di permeabilità Classe 4 secondo Norma

UNI EN 12207

Dati per il calcolo degli apporti solari

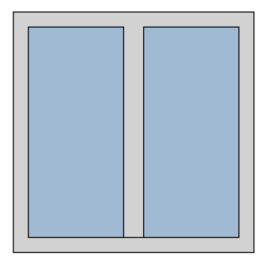
Emissività $\epsilon \qquad 0,837 \quad -$ Fattore tendaggi (invernale) $f_{c \text{ inv}} \qquad 1,00 \quad -$ Fattore tendaggi (estivo) $f_{c \text{ est}} \qquad 0,45 \quad -$ Fattore di trasmittanza solare $g_{gl,n} \qquad 0,500 \quad -$ Fattore trasmissione solare totale $g_{gl+sh} \qquad 0,491 \quad -$

Resistenza termica chiusure 0,00 m²K/W f shut 0,0 -

Dimensioni del serramento

Larghezza **240,0** cm Altezza **240,0** cm

Caratteristiche del telaio


K distanziale	K_d	0,03	W/mK
Area totale	A_w	<i>5,760</i>	m^2
Area vetro	A_g	3,990	m^2
Area telaio	A_f	1,770	m^2
Fattore di forma	F_f	0,69	-
Perimetro vetro	L_g	12,200	m
Perimetro telaio	L_f	9,600	m

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,310 W/m²K

Ponte termico del serramento

Ponte termico associato $\begin{tabular}{lll} \it{Z4} & \it{W} - \it{Parete} - \it{Telaio} \\ \it{Trasmittanza termica lineica} & \Psi & \it{0,023} & W/mK \\ \it{Lunghezza perimetrale} & \it{2,40} & m \\ \end{tabular}$

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: F 200x240

Codice: W4

Caratteristiche del serramento

Tipologia di serramento

Classe 4 secondo Norma Classe di permeabilità **UNI EN 12207**

Trasmittanza termica U_w **1,300** W/m²K Trasmittanza solo vetro U_q **1,000** W/m²K

Dati per il calcolo degli apporti solari

Emissività ۶ 0,837 Fattore tendaggi (invernale) 1,00 $f_{c inv}$ $f_{c \; est}$ Fattore tendaggi (estivo) 0,45 Fattore di trasmittanza solare 0,500 $g_{gl,n}$ Fattore trasmissione solare totale 0,491 g_{ql+sh}

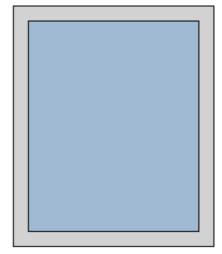
Resistenza termica chiusure 0,00 m²K/W

f shut 0,0

Dimensioni del serramento

Larghezza 200,0 cm Altezza **240,0** cm

Caratteristiche del telaio


K distanziale	K_{d}	0,03	W/mK
Area totale	A_{w}	4,800	m^2
Area vetro	A_{g}	<i>3,570</i>	m^2
Area telaio	A_f	1,230	m^2
Fattore di forma	F_f	0,74	-
Perimetro vetro	L_g	7,600	m
Perimetro telaio	L_f	8,800	m

Caratteristiche del modulo

Trasmittanza termica del modulo **1,310** W/m²K

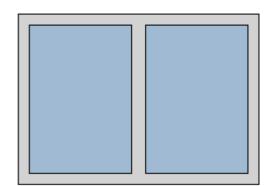
Ponte termico del serramento

Ponte termico associato **Z4** W - Parete - Telaio Trasmittanza termica lineica **0,023** W/mK Lunghezza perimetrale 2,00 m

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 – UNI EN ISO 6946 – UNI EN ISO 10077

Descrizione della finestra: PF 340x240

Caratteristiche del serramento


Tipologia di serramento -

Classe di permeabilità Classe 4 secondo Norma

uni En 12207

Dati per il calcolo degli apporti solari

Emissività $\epsilon \hspace{0.5cm} \textbf{0,837} \hspace{0.5cm} -$ Fattore tendaggi (invernale) $f_{c \hspace{0.1cm} inv} \hspace{0.5cm} \textbf{1,00} \hspace{0.5cm} -$ Fattore tendaggi (estivo) $f_{c \hspace{0.1cm} est} \hspace{0.5cm} \textbf{0,45} \hspace{0.5cm} -$ Fattore di trasmittanza solare $g_{gl,n} \hspace{0.5cm} \textbf{0,500} \hspace{0.5cm} -$ Fattore trasmissione solare totale $g_{gl+sh} \hspace{0.5cm} \textbf{0,491} \hspace{0.5cm} -$

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure **0,00** m²K/W

f shut **0,0** -

Dimensioni del serramento

Larghezza **340,0** cm Altezza **240,0** cm

Caratteristiche del telaio

K distanziale	K_d	0,03	W/mK
Area totale	A_{w}	8,160	m^2
Area vetro	A_g	6,090	m^2
Area telaio	A_f	2,070	m^2
Fattore di forma	F_f	0,75	-
Perimetro vetro	L_g	14,200	m
Perimetro telaio	Lf	11,600	m

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,310 W/m²K

Ponte termico del serramento

Ponte termico associato $\begin{tabular}{lll} \it{Z4} & \it{W} - \it{Parete} - \it{Telaio} \\ \it{Trasmittanza termica lineica} & \it{\Psi} & \it{0,023} & \it{W/mK} \\ \it{Lunghezza perimetrale} & \it{3,40} & \it{m} \\ \end{tabular}$

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 – UNI EN ISO 6946 – UNI EN ISO 10077

Descrizione della finestra: PF 120x240

Caratteristiche del serramento

Tipologia di serramento -

Classe di permeabilità Classe 4 secondo Norma UNI EN 12207

ON1 LN 12207

Trasmittanza termica U_w **1,300** W/m²K Trasmittanza solo vetro U_q **1,000** W/m²K

Dati per il calcolo degli apporti solari

Fattore trasmissione solare totale g_{gl+sh} **0,491**

Caratteristiche delle chiusure oscuranti

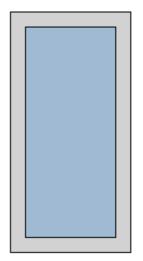
Resistenza termica chiusure **0,00** m²K/W

f shut **0,0** -

Dimensioni del serramento

Larghezza 120,0 cm Altezza 240,0 cm

Caratteristiche del telaio


K distanziale W/mK K_d 0,03 m^2 Area totale 2,880 A_{w} Area vetro A_a 1,890 m^2 Area telaio A_f 0,990 m^2 Fattore di forma F_f 0,66 Perimetro vetro 6,000 m Perimetro telaio Lf 7,200 m

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,310 W/m²K

Ponte termico del serramento

Ponte termico associato $\begin{tabular}{lll} \it{Z4} &\it{W} - \it{Parete} - \it{Telaio} \\ \it{Trasmittanza termica lineica} &\it{\Psi} &\it{0,023} &\it{W/mK} \\ \it{Lunghezza perimetrale} &\it{1,20} &\it{m} \\ \end{tabular}$

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: F 180x240

Codice: W7

Caratteristiche del serramento

Tipologia di serramento

Classe 4 secondo Norma Classe di permeabilità **UNI EN 12207**

Trasmittanza termica U_w **1,300** W/m²K Trasmittanza solo vetro U_q **1,000** W/m²K

Dati per il calcolo degli apporti solari

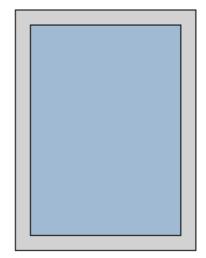
Emissività ۶ 0,837 Fattore tendaggi (invernale) 1,00 $f_{c inv}$ $f_{c \; est}$ Fattore tendaggi (estivo) 0,45 Fattore di trasmittanza solare 0,500 $g_{gl,n}$ Fattore trasmissione solare totale 0,491 g_{ql+sh}

Resistenza termica chiusure 0,00 m²K/W f shut 0,0

Dimensioni del serramento

Larghezza 180,0 cm Altezza **240,0** cm

Caratteristiche del telaio


K distanziale	K_d	0,03	W/mK
Area totale	A_{w}	4,320	m^2
Area vetro	A_g	3,150	m^2
Area telaio	A_f	1,170	m^2
Fattore di forma	F_f	0,73	-
Perimetro vetro	L_g	<i>7,</i> 200	m
Perimetro telaio	L_f	8,400	m

Caratteristiche del modulo

Trasmittanza termica del modulo **1,310** W/m²K

Ponte termico del serramento

Ponte termico associato **Z4** W - Parete - Telaio Trasmittanza termica lineica **0,023** W/mK Lunghezza perimetrale 1,80 m

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 – UNI EN ISO 6946 – UNI EN ISO 10077

Descrizione della finestra: F 135x240

Caratteristiche del serramento

Tipologia di serramento -

Classe di permeabilità Classe 4 secondo Norma

uni En 12207

Trasmittanza termica U_w **1,300** W/m²K Trasmittanza solo vetro U_q **1,000** W/m²K

Dati per il calcolo degli apporti solari

Emissività ϵ 0,837 - Fattore tendaggi (invernale) $f_{c inv}$ 1,00 - Fattore tendaggi (estivo) $f_{c est}$ 0,45 - Fattore di trasmittanza solare $g_{gl,n}$ 0,500 - Fattore trasmissione solare totale g_{gl+sh} 0,491 -

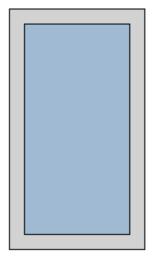
Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure 0,00 m²K/W f shut 0,0 -

<u>Dimensioni del serramento</u>

Larghezza **135,0** cm Altezza **240,0** cm

Caratteristiche del telaio


K distanziale **0,03** W/mK K_d m^2 Area totale 3,240 A_{w} Area vetro A_a 2,205 m^2 Area telaio A_f 1,035 m^2 Fattore di forma F_f 0,68 Perimetro vetro 6,300 m Perimetro telaio Lf 7,500 m

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,310 W/m²K

Ponte termico del serramento

Ponte termico associato Z4 W - Parete - Telaio Trasmittanza termica lineica Ψ 0,023 W/mK Lunghezza perimetrale 1,40 m

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 – UNI EN ISO 6946 – UNI EN ISO 10077

Descrizione della finestra: PF 200x240

Caratteristiche del serramento

Tipologia di serramento -

Classe di permeabilità Classe 4 secondo Norma UNI EN 12207

Trasmittanza termica U_w **1,300** W/m²K Trasmittanza solo vetro U_g **1,000** W/m²K

Dati per il calcolo degli apporti solari

Emissività $\epsilon \qquad 0,837 \quad -$ Fattore tendaggi (invernale) $f_{c \text{ inv}} \qquad 1,00 \quad -$ Fattore tendaggi (estivo) $f_{c \text{ est}} \qquad 0,45 \quad -$ Fattore di trasmittanza solare $g_{gl,n} \qquad 0,500 \quad -$ Fattore trasmissione solare totale $g_{gl+sh} \qquad 0,491 \quad -$

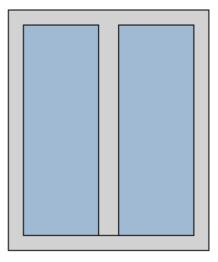
Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure 0,00 m²K/W f shut 0,0 -

Dimensioni del serramento

Larghezza **200,0** cm Altezza **240,0** cm

Caratteristiche del telaio


K distanziale 0,03 W/mK K_d m^2 Area totale 4,800 A_{w} Area vetro A_a 3,150 m^2 Area telaio A_f 1,650 m^2 Fattore di forma 0,66 F_f Perimetro vetro 11,400 m Perimetro telaio Lf 8,800 m

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,310 W/m²K

Ponte termico del serramento

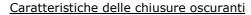
Ponte termico associato Z4 W - Parete - Telaio Trasmittanza termica lineica Ψ 0,023 W/mK Lunghezza perimetrale 2,00 m

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 – UNI EN ISO 6946 – UNI EN ISO 10077

Descrizione della finestra: F 70x70

Caratteristiche del serramento

Tipologia di serramento -


Classe di permeabilità Classe 4 secondo Norma

UNI EN 12207

Trasmittanza termica U_w **1,300** W/m²K Trasmittanza solo vetro U_g **1,000** W/m²K

Dati per il calcolo degli apporti solari

Emissività $\epsilon \qquad \textbf{0,837} \quad -$ Fattore tendaggi (invernale) $f_{c \text{ inv}} \qquad \textbf{0,65} \quad -$ Fattore tendaggi (estivo) $f_{c \text{ est}} \qquad \textbf{0,45} \quad -$ Fattore di trasmittanza solare $g_{gl,n} \qquad \textbf{0,500} \quad -$ Fattore trasmissione solare totale $g_{gl+sh} \qquad \textbf{0,319} \quad -$

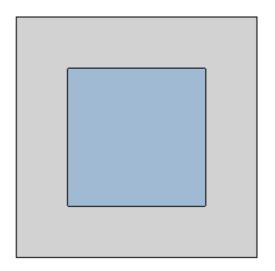
Resistenza termica chiusure 0,00 m²K/W

f shut **0,0** -

Dimensioni del serramento

Larghezza **70,0** cm Altezza **70,0** cm

Caratteristiche del telaio


K distanziale W/mK K_d 0,03 m^2 Area totale 0,490 A_{w} Area vetro A_a 0,160 m^2 Area telaio A_f 0,330 m^2 Fattore di forma 0,33 F_f Perimetro vetro 1,600 m Perimetro telaio Lf 2,800 m

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,432 W/m²K

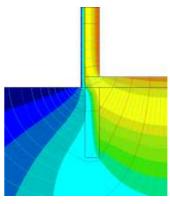
Ponte termico del serramento

Ponte termico associato Z4 W - Parete - Telaio Trasmittanza termica lineica Ψ 0,023 W/mK Lunghezza perimetrale 2,80 m

Descrizione del ponte termico: GF - Parete - Solaio controterra

Codice: Z1

Tipologia GF – Parete – Solaio controterra


Trasmittanza termica lineica di calcolo 0,024 W/mK Trasmittanza termica lineica di riferimento 0,048 W/mK Fattore di temperature f_{rsi} 0,593 -

Riferimento UNI EN ISO 14683 e UNI EN ISO 10211

Note

GF1b – Giunto parete con isolamento esterno – solaio controterra non isolato Trasmittanza termica lineica di riferimento (ϕ e) = 0,048 W/mK.

Caratteristiche

Dimensione caratteristica del pavimento	В'	3,00	m
Spessore solaio	Ssol	200,0	mm
Spessore muro	Smur	250,0	mm
Trasmittanza termica solaio	Usol	0,448	W/m²K
Trasmittanza termica parete	Upar	0,155	W/m ² K
Conduttività termica muro	λmur	0,250	W/mK

Verifica temperatura critica

<u>Condizioni interne:</u>

Umidità relativa interna costante

55 %

Temperature medie mensili
-

Temperatura interna periodo di riscaldamento **20,0** °C

Umidità relativa superficiale ammissibile 80 %

Mese	θi	θe	θsi	Өасс	Verifica
ottobre	20,0	15,1	18,0	14,1	POSITIVA
novembre	20,0	12,7	17,0	14,1	POSITIVA
dicembre	20,0	9,3	15,6	14,1	POSITIVA
gennaio	20,0	7,9	15,1	14,1	POSITIVA
febbraio	20,0	7,2	14,8	14,1	POSITIVA
marzo	20,0	7,8	15,0	14,1	POSITIVA
aprile	20,0	10,1	16,0	14,1	POSITIVA

Legenda simboli

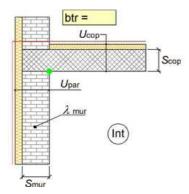
θ_{i}	Temperatura interna al locale	°C
θ_{e}	Temperatura esterna	°C
θ_{si}	Temperatura superficiale interna in luogo del ponte termico	°C
θ_{acc}	Temperatura minima accettabile per scongiurare il fenomeno di condensa	°C

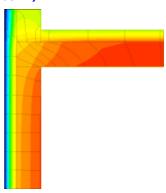
°C

<u>Descrizione del ponte termico:</u> R - Parete - Copertura

Codice: Z2

Tipologia R - Parete - Copertura


Trasmittanza termica lineica di calcolo 0,002 W/mK
Trasmittanza termica lineica di riferimento 0,005 W/mK
Fattore di temperature f_{rsi} 0,896 -


Riferimento UNI EN ISO 14683 e UNI EN ISO 10211

Note

R5 – Giunto parete sporgente con isolamento esterno – copertura isolata esternamente verso ambiente non climatizzato

Trasmittanza termica lineica di riferimento (ϕ e) = 0,005 W/mK.

Caratteristiche

Coeff. Correzione temperatura	btr	0,50	-
Spessore copertura	Scop	100,0	mm
Spessore muro	Smur	250,0	mm
Trasmittanza termica copertura	Ucop	0,164	W/m²K
Trasmittanza termica parete	Upar	0,155	W/m²K
Conduttività termica muro	λmur	0,250	W/mK

Verifica temperatura critica

<u>Condizioni interne:</u> <u>Condizioni esterne:</u>

Umidità relativa interna costante **55** % Temperature medie mensili - °C
Temperatura interna periodo di riscaldamento **20,0** °C

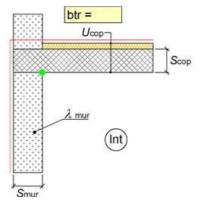
Umidità relativa superficiale ammissibile **80** %

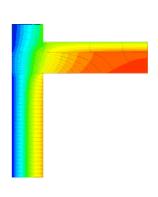
Mese	θi	θe	θsi	Ө асс	Verifica
ottobre	20,0	16,5	19,6	14,1	POSITIVA
novembre	20,0	13,1	19,3	14,1	POSITIVA
dicembre	20,0	11,6	19,1	14,1	POSITIVA
gennaio	20,0	10,9	19,1	14,1	POSITIVA
febbraio	20,0	11,6	19,1	14,1	POSITIVA
marzo	20,0	13,8	19,4	14,1	POSITIVA
aprile	20,0	16,2	19,6	14,1	POSITIVA

θ_{i}	Temperatura interna al locale	°C
θ_{e}	Temperatura esterna	°C
θ_{si}	Temperatura superficiale interna in luogo del ponte termico	°C
θ_{acc}	Temperatura minima accettabile per scongiurare il fenomeno di condensa	°C

Descrizione del ponte termico: R - Parete CG - Copertura

Codice: Z3


Tipologia R - Parete - Copertura Trasmittanza termica lineica di calcolo -0,023 W/mK Trasmittanza termica lineica di riferimento -0,045 W/mK Fattore di temperature f_{rsi} 0,499 -


Riferimento UNI EN ISO 14683 e UNI EN ISO 10211

Note

R18 – Giunto parete con isolamento ripartito – copertura isolata esternamente verso ambiente non climatizzato

Trasmittanza termica lineica di riferimento (ϕ e) = -0,045 W/mK.

Caratteristiche

Coeff. Correzione temperatura	btr	0,50	-
Spessore copertura	Scop	100,0	mm
Spessore muro	Smur	150,0	mm
Trasmittanza termica copertura	Ucop	0,160	W/m²K
Conduttività termica muro	λmur	0,350	W/mK

Verifica temperatura critica

<u>Condizioni interne:</u> <u>Condizioni esterne:</u>

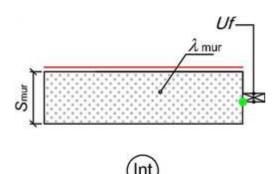
Umidità relativa interna costante **55** % Temperature medie mensili - °C

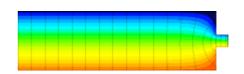
Temperatura interna periodo di riscaldamento 20,0 °C Umidità relativa superficiale ammissibile 80 %

Mese	θі	θe	θsi	Ө асс	Verifica
ottobre	20,0	16,5	18,2	14,1	POSITIVA
novembre	20,0	13,1	16,5	14,1	POSITIVA
dicembre	20,0	11,6	15,8	14,1	POSITIVA
gennaio	20,0	10,9	15,5	14,1	POSITIVA
febbraio	20,0	11,6	15,8	14,1	POSITIVA
marzo	20,0	13,8	16,9	14,1	POSITIVA
aprile	20,0	16,2	18,1	14,1	POSITIVA

θ_{i}	Temperatura interna al locale	°C
θ_{e}	Temperatura esterna	°C
θ_{si}	Temperatura superficiale interna in luogo del ponte termico	°C
θ_{acc}	Temperatura minima accettabile per scongiurare il fenomeno di condensa	°C

<u>Descrizione del ponte termico:</u> W - Parete - Telaio


Codice: Z4


Tipologia W-Parete-Telaio Trasmittanza termica lineica di calcolo 0,023 W/mK Trasmittanza termica lineica di riferimento 0,023 W/mK Fattore di temperature f_{rsi} 0,685 -

Riferimento UNI EN ISO 14683 e UNI EN ISO 10211

Note

W10 – Giunto parete con isolamento ripartito – telaio posto in mezzeria Trasmittanza termica lineica di riferimento (ϕ e) = 0,023 W/mK.

Caratteristiche

Trasmittanza termica telaio	Uf	1,000	W/m²K
Spessore muro	Smur	150,0	mm
Conduttività termica muro	λmur	0,300	W/mK

Verifica temperatura critica

Condizioni interne:

Umidità relativa interna costante

55 %

Temperature medie mensili

- °C

Temperatura interna periodo di riscaldamento

20,0 °C

Umidità relativa superficiale ammissibile

80 %

Mese	θί	θ _e	θsi	Өасс	Verifica
ottobre	20,0	13,0	17,8	14,1	POSITIVA
novembre	20,0	6,1	15,6	14,1	POSITIVA
dicembre	20,0	3,3	14,7	14,1	POSITIVA
gennaio	20,0	1,9	14,3	14,1	POSITIVA
febbraio	20,0	3,2	14,7	14,1	POSITIVA
marzo	20,0	7,7	16,1	14,1	POSITIVA
aprile	20,0	12,4	17,6	14,1	POSITIVA

$\boldsymbol{\theta}_{i}$	Temperatura interna al locale	°C
θ_{e}	Temperatura esterna	°C
θ_{si}	Temperatura superficiale interna in luogo del ponte termico	°C
θ_{acc}	Temperatura minima accettabile per scongiurare il fenomeno di condensa	°C

FABBISOGNO DI POTENZA TERMICA INVERNALE secondo UNI EN 12831

Dati climatici della località:

Località	Monte Cremasco		
Provincia	Cremona		
Altitudine s.l.m.		84	m
Gradi giorno		<i>2557</i>	
Zona climatica		E	
Temperatura esterna di progetto		-6,0	°C

Dati geometrici dell'intero edificio:

Superficie in pianta netta	306,04	m^2
Superficie esterna lorda	1061,42	m^2
Volume netto	1099,83	m^3
Volume lordo	1437,22	m^3
Rapporto S/V	0,74	m ⁻¹

Opzioni di calcolo:

Metodologia di calcolo *Vicini presenti*

Coefficiente di sicurezza adottato 1,00 -

Coefficienti di esposizione solare:

Nord-Ovest: **1,15** Nord-Est: **1,20**

Nord: **1,20**

Ovest: 1,10 Est: 1,15

Sud-Ovest: **1,05** Sud-Est: **1,10**

Sud: 1,00

RIASSUNTO DISPERSIONI DEI LOCALI

Opzioni di calcolo:

Metodologia di calcolo Vicini presenti

Coefficiente di sicurezza adottato 1,00 -

Zona 1 - Sala polifunzionale fabbisogno di potenza dei locali

Loc	Descrizione	θi [°C]	n [1/h]	Ф _{tr} [W]	Ф _{ve} [W]	Ф _{rh} [W]	Ф _н [W]	Ф _{hl sic} [W]
1	Sala polifunzionale	20,0	1,77	7247	2495	1966	11708	11708
			Totale:	7247	2495	1966	11708	11708

Zona 2 - Bar / Cucina fabbisogno di potenza dei locali

Loc	Descrizione	θi [°C]	n [1/h]	Ф _{tr} [W]	Ф _{ve} [W]	Φ _{rh} [W]	Ф _h [W]	Ф _{hl sic} [W]
1	Cucina	20,0	18,56	<i>782</i>	18517	0	19299	19299
2	Bar	20,0	3,75	1457	3897	0	5354	5354
3	Servizi	20,0	0,65	492	303	0	<i>7</i> 95	795

Totale: 2731 22718 0 25449 25449

Totale Edifico: 9978 25213 1966 37157 37157

Legenda simboli

 θ i Temperatura interna del locale

n Ricambio d'aria del locale

 $\begin{array}{ll} \Phi_{tr} & \text{Potenza dispersa per trasmissione} \\ \Phi_{ve} & \text{Potenza dispersa per ventilazione} \\ \Phi_{rh} & \text{Potenza dispersa per intermittenza} \end{array}$

Φ_{hl} Potenza totale dispersa

RIASSUNTO DISPERSIONI DELLE ZONE

Opzioni di calcolo:

Metodologia di calcolo Vicini presenti

Coefficiente di sicurezza adottato 1,00 -

Dati geometrici delle zone termiche:

Zona	Descrizione	V [m³]	V _{netto} [m³]	S _u [m²]	S _{lorda} [m²]	S [m²]	S/V [-]
1	Sala polifunzionale	1025,17	811,15	218,47	236,03	713,00	0,70
2	Bar / Cucina	412,05	288,68	87,57	104,60	348,42	0,85

Totale: 1437,22 1099,83 306,04 340,64 1061,42 0,74

Fabbisogno di potenza delle zone termiche

Zona	Descrizione	Ф _{tr} [W]	Ф _{ve} [W]	Φ _{rh} [W]	Ф _h [W]	Ф _{hI sic} [W]
1	Sala polifunzionale	7247	2495	1966	11708	11708
2	Bar / Cucina	2731	22718	0	25449	25449

Totale: 9978 25213 1966 37157 37157

Legenda simboli

 $egin{array}{ll} V & Volume \ lordo \\ V_{netto} & Volume \ netto \\ \end{array}$

 S_u Superficie in pianta netta S_{lorda} Superficie in pianta lorda

S Superficie esterna lorda (senza strutture di tipo N)

S/V Fattore di forma

 $\begin{array}{ll} \Phi_{tr} & \text{Potenza dispersa per trasmissione} \\ \Phi_{ve} & \text{Potenza dispersa per ventilazione} \\ \Phi_{rh} & \text{Potenza dispersa per intermittenza} \end{array}$

Φ_{hl} Potenza totale dispersa

5. IMPIANTO DI RISCALDAMENTO

5.1 DESCRIZIONE GENERALE

L'impianto di riscaldamento progettato prevede per l'edificio una centrale termica esterna il cui generatore è una pompa di calore ARIA -ARIA di tipo roof-top, per la climatizzazione invernale ed estiva della sala polifunzionale.

Per gli ambienti di servizio (bar e cucina), si utilizzerà sempre una pompa di calore, ma ad espansione diretta, con sistemi di emissione che sono cassette a soffitto. Anche in questo caso forniranno il servizio di climatizzazione invernale ed estiva.

Le pompe di calore saranno: la prima con una potenzialità da 30 kW termici, mentre la seconda per il riscaldamento e una da 14 Kw termici di potenza.

Il tutto viene completato da una pompa di calore per la produzione di ACS da termica per la produzione ACS.

Per la climatizzazione invernale degli edifici sono previste le seguenti tipologie di emettitori:

- L'impianto di riscaldamento invernale della sala polifunzionale sarà realizzato con impianto a tutta aria, con canalizzazioni microforate in acciaio zincato di mandata, e aspirazione sempre tramite canalizzazione.
- l'impianto garantirà anche un parziale apporto di aria primaria pari a 1500 mc/h, ad integrazione della ventilazione naturale comunque garantita dai rapporti areanti di progetto.
- L'impianto di riscaldamento invernale della cucina e del bar sarà con emissione di aria calda dalle cassette a soffitto.

5.1.1 CENTRALE TECNOLOGICA.

Per la produzione del fluido caldo necessari al funzionamento degli impianti sono prevista da pompa di calore una aria -aria .

La pompa di calore permette il funzionamento in questi regimi:

- solo funzionamento impianto riscaldamento e raffrescamento.

Le canalizzazioni di distribuzione del fluido termovettore saranno nuove ovviamente, con isolamento ex DPR 412/93 (a norma di legge) e correranno a parete o a pavimento, all'interno dell'isolamento delle strutture opache dell'edificio ed andranno ad alimentare i collettori dell'impianto a pannelli radianti della dell'edificio.

5.1.2 IMPIANTO DI RISCALDAMENTO

Gli anelli dell'impianto a pavimento saranno derivati da appositi collettori installati in una cassetta incassata a parete, la cui resa sarà di 55/60 W/mq.

I circuiti saranno serviti da elettropompe di circolazione a portata variabile a basso consumo e saranno completi di sicurezze e valvolame, oltre ad un sistema di regolazione climatica della temperatura di mandata agli impianti a pannelli radianti.

5.1.3 LOGICA DI FUNZIONAMENTO DELL'IMPIANTO

Il sistema di supervisione attuerà la seguente logica di funzionamento degli impianti:

FUNZIONAMENTO INVERNALE

- Il funzionamento invernale del roof-top sarà regolato da una centralina di comando in ambiente.

Non sempre sarà necessario avere entrambe le PDC in funzionamento, ma solo in determinati spazio temporali che saranno concordati con la gestione. Inoltre la temperatura di produzione dell'aria calda sarà a punto fisso.

6. <u>VERIFICHE E PROVE PRELIMINARI</u>

Durante l'esecuzione dei lavori dovranno essere effettuate a cura della ditta installatrice le seguenti

prove:

- prova di tenuta di tutte le tubazioni, prima della chiusura delle tracce, ad una pressione non inferiore a 2 volte quella massima di esercizio, ove necessario
- prova idraulica a freddo, se possibile mano a mano che si esegue l'impianto ed in ogni caso ad impianto ultimato, ove necessario
- prova preliminare di circolazione, di tenuta e di dilatazione con fluidi scaldanti e raffreddanti, dopo l'effettuazione della prova precedente.

7. FABBISOGNO DI ENERGIA UTILE INVERNALE

FABBISOGNO DI ENERGIA UTILE INVERNALE secondo UNI EN ISO 13790 e UNI TS 11300-1

Dati climatici della località:

Località Monte Cremasco

Provincia *Cremona*

Altitudine s.l.m. 84 m
Gradi giorno 2557
Zona climatica E
Temperatura esterna di progetto -6,0 °C

Irradiazione solare giornaliera media mensile:

Esposizione	u.m.	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Nord	MJ/m²	1,5	2,2	3,4	4,8	7,3	9,3	8,7	6,5	4,2	2,4	1,5	1,0
Nord-Est	MJ/m²	1,6	2,9	5,4	7,3	9,8	12,2	11,5	9,3	6,4	3,0	1,7	1,1
Est	MJ/m²	3,4	6,0	9,4	10,1	11,9	14,5	13,7	12,0	9,5	4,8	3,4	3,0
Sud-Est	MJ/m²	6,0	9,2	12,0	10,7	11,2	12,6	12,3	12,0	10,9	6,5	5,6	5,8
Sud	MJ/m²	7,7	11,0	12,7	9,7	9,2	9,7	9,9	10,3	10,7	7,3	7,0	7,6
Sud-Ovest	MJ/m²	6,0	9,2	12,0	10,7	11,2	12,6	12,3	12,0	10,9	6,5	5,6	5,8
Ovest	MJ/m²	3,4	6,0	9,4	10,1	11,9	14,5	13,7	12,0	9,5	4,8	3,4	3,0
Nord-Ovest	MJ/m²	1,6	2,9	5,4	7,3	9,8	12,2	11,5	9,3	6,4	3,0	1,7	1,1
Orizz. Diffusa	MJ/m²	2,1	2,9	4,3	5,9	7,8	7,8	8,4	7,5	5,7	3,4	2,1	1,4
Orizz. Diretta	MJ/m²	2,1	4,6	8,2	8,8	10,4	14,6	12,7	10,4	7,7	3,2	2,2	2,0

Zona 1 : Sala polifunzionale

Temperature esterne medie e numero di giorni nella stagione considerata:

Descrizione	u.m.	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Temperatura	°C	1,9	3,2	7,7	11,3	-	-	-	-	-	11,2	6,1	3,3
Nº giorni	-	31	28	31	15	-	-	-	-	-	17	30	31

Opzioni di calcolo:

Metodologia di calcolo *Vicini presenti*

Stagione di calcolo *Convenzionale* dal *15 ottobre* al *15 aprile*

Durata della stagione 183 giorni

Dati geometrici:

218,47	m²
713,00	m^2
811,15	m^3
1025,17	m^3
0,70	m ⁻¹
	713,00 811,15 1025,17

Zona 2 : Bar / Cucina

Temperature esterne medie e numero di giorni nella stagione considerata:

Descrizione	u.m.	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Temperatura	°C	1,9	3,2	7,7	11,3	-	-	-	-	-	11,2	6,1	3,3
N° giorni	-	31	28	31	15	-	-	-	-	-	17	30	31

Opzioni di calcolo:

Metodologia di calcolo *Vicini presenti*

Stagione di calcolo *Convenzionale* dal *15 ottobre* al *15 aprile*

Durata della stagione 183 giorni

Dati geometrici:

Superficie in pianta netta	<i>87,57</i>	m^2
Superficie esterna lorda	348,42	m^2
Volume netto	288,68	m^3
Volume lordo	412,05	m^3
Rapporto S/V	0,85	m ⁻¹

FABBISOGNO DI ENERGIA UTILE ESTIVA secondo UNI EN ISO 13790 e UNI TS 11300-1

Dati climatici della località:

Località Monte Cremasco

Provincia *Cremona*

Altitudine s.l.m. 84 m
Gradi giorno 2557
Zona climatica E
Temperatura esterna di progetto -6,0 °C

Irradiazione solare giornaliera media mensile:

Esposizione	u.m.	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Nord	MJ/m²	1,5	2,2	3,4	4,8	7,3	9,3	8,7	6,5	4,2	2,4	1,5	1,0
Nord-Est	MJ/m²	1,6	2,9	5,4	7,3	9,8	12,2	11,5	9,3	6,4	3,0	1,7	1,1
Est	MJ/m²	3,4	6,0	9,4	10,1	11,9	14,5	13,7	12,0	9,5	4,8	3,4	3,0
Sud-Est	MJ/m²	6,0	9,2	12,0	10,7	11,2	12,6	12,3	12,0	10,9	6,5	5,6	5,8
Sud	MJ/m²	7,7	11,0	12,7	9,7	9,2	9,7	9,9	10,3	10,7	7,3	7,0	7,6
Sud-Ovest	MJ/m²	6,0	9,2	12,0	10,7	11,2	12,6	12,3	12,0	10,9	6,5	5,6	5,8
Ovest	MJ/m²	3,4	6,0	9,4	10,1	11,9	14,5	13,7	12,0	9,5	4,8	3,4	3,0
Nord-Ovest	MJ/m²	1,6	2,9	5,4	7,3	9,8	12,2	11,5	9,3	6,4	3,0	1,7	1,1
Orizz. Diffusa	MJ/m²	2,1	2,9	4,3	5,9	7,8	7,8	8,4	7,5	5,7	3,4	2,1	1,4
Orizz. Diretta	MJ/m²	2,1	4,6	8,2	8,8	10,4	14,6	12,7	10,4	7,7	3,2	2,2	2,0

Zona 1 : Sala polifunzionale

Temperature esterne medie e numero di giorni nella stagione considerata:

Descrizione	u.m.	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Temperatura	°C	-	-	-	13,8	17,5	21,9	22,7	21,7	17,7	14,6	-	-
Nº giorni	-	-	-	-	14	31	30	31	31	30	9		-

Opzioni di calcolo:

Metodologia di calcolo *Vicini presenti*

Stagione di calcolo **Reale** dal **17 aprile** al **09 ottobre**

Durata della stagione 176 giorni

Dati geometrici:

Superficie in pianta netta	218,47	m^2
Superficie esterna lorda	713,00	m^2
Volume netto	811,15	m^3
Volume lordo	1025,17	m^3
Rapporto S/V	0,70	m ⁻¹

Zona 2: Bar / Cucina

Temperature esterne medie e numero di giorni nella stagione considerata:

Descrizione	u.m.	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Temperatura	°C	-	-	-	-	19,3	21,9	22,7	21,9	-	-	-	•
Nº giorni	-	_	_	_	_	7	30	31	15	_	_	_	_

Opzioni di calcolo:

Metodologia di calcolo *Vicini presenti*

Stagione di calcolo **Reale** dal **25 maggio** al **15 agosto**

Durata della stagione 83 giorni

Dati geometrici:

Superficie in pianta netta	<i>87,57</i>	m^2
Superficie esterna lorda	348,42	m^2
Volume netto	288,68	m^3
Volume lordo	412,05	m^3
Rapporto S/V	0,85	m ⁻¹

COEFFICIENTI DI DISPERSIONE TERMICA STAGIONE ESTIVA

Zona 1 : Sala polifunzionale

Hτ: Coefficiente di scambio termico per trasmissione da locale climatizzato verso esterno:

Cod	Descrizione elemento	U [W/m²K] Ψ [W/mK]	Sup.[m²] Lungh [m]	H _⊤ [W/K]
M1	MURO ESTERNO CAPPOTTO	0,155	34,33	<i>5,3</i>
M2	MURO ESTERNO CARTONGESSO	0,210	69,85	14,6
<i>Z</i> 2	R - Parete - Copertura	0,002	<i>7,75</i>	0,0
<i>Z3</i>	R - Parete CG - Copertura	-0,023	31,29	-0,7
<i>Z</i> 4	W - Parete - Telaio	0,023	28,40	0,7
W1	F 160x240	1,300	7,68	10,0
W2	F 150x240	1,300	7,20	9,4
W3	PF 240x240	1,300	<i>5,7</i> 6	7,5
W4	F 200x240	1,300	24,00	31,2
W5	PF 340x240	1,300	16,32	21,2
W6	PF 120x240	1,300	2,88	3,7
<i>W7</i>	F 180x240	1,300	4,32	5,6

Totale **108,5**

106,3

Hg: Coefficiente di scambio termico per trasmissione da locale climatizzato verso terreno:

	Cod	Descrizione elemento	U [W/m²K] Ψ [W/mK]	Sup.[m²] Lungh [m]	H _G [W/K]
	P1	PAVIMENTO CONTROTERRA	0,448	236,03	105,7
21 GF - Parete - Solaio controterra	<i>Z</i> 1	GF - Parete - Solaio controterra	0,024	23,70	0,6

Hu: Coefficiente di scambio termico per trasmissione da locale climatizzato verso locali non climatizzati:

Cod	Descrizione elemento	U [W/m²K] Ψ [W/mK]	Sup.[m²] Lungh [m]	b _{tr, υ} [-]	Η _υ [W/K]
M3	MURO VERSO DEPOSITO	0,154	66,08	0,94	9,6
M11	PORTA REI	0,535	2,52	0,94	1,3
<i>S</i> 1	CONTROSOFFITTO	0,160	236,03	0,93	35,2
<i>Z</i> 2	R - Parete - Copertura	0,002	15,96	-	0,0

Totale **46,1**

Totale

Hve: Coefficiente di scambio termico per ventilazione:

Nr.	Descrizione locale	Ventilazione	V _{netto} [m³]	q _{ve,0} [m³/h]	f _{ve,t} [-]	H _{ve} [W/K]
1	Sala polifunzionale	Meccanica	811,15	1439,28	1,00	479,8

Totale **479,8**

Zona 2: Bar / Cucina

Hτ: Coefficiente di scambio termico per trasmissione da locale climatizzato verso esterno:

Cod	Descrizione elemento	U [W/m²K] Ψ [W/mK]	Sup.[m²] Lungh [m]	H _T [W/K]
M1	MURO ESTERNO CAPPOTTO	0,155	88,47	13,7
M2	MURO ESTERNO CARTONGESSO	0,210	8,53	1,8
M12	PORTA ESTERNA	0,548	2,52	1,4
<i>Z</i> 2	R - Parete - Copertura	0,002	23,61	0,1
<i>Z3</i>	R - Parete CG - Copertura	-0,023	5,17	-0,1
<i>Z</i> 4	W - Parete - Telaio	0,023	13,20	0,3
W8	F 135x240	1,300	6,48	8,4

W9	PF 200x240	1,300	4,80	6,2
W10	F 70x70	1,300	1,47	1,9
	•			

Totale **33,7**

HG: Coefficiente di scambio termico per trasmissione da locale climatizzato verso terreno:

Cod	Descrizione elemento	U [W/m²K] Ψ [W/mK]	Sup.[m²] Lungh [m]	H _G [W/K]
P1	PAVIMENTO CONTROTERRA	0,448	104,60	46,9
<i>Z</i> 1	GF - Parete - Solaio controterra	0,024	29,69	0,7

Totale **47,6**

Hu: Coefficiente di scambio termico per trasmissione da locale climatizzato verso locali non climatizzati:

Cod	Descrizione elemento	U [W/m²K] Ψ [W/mK]	Sup.[m²] Lungh [m]	b tr, υ [-]	H _U [W/K]
M3	MURO VERSO DEPOSITO	0,154	26,95	0,94	3,9
<i>S</i> 1	CONTROSOFFITTO	0,160	104,60	0,93	15,6
<i>Z</i> 2	R - Parete - Copertura	0,002	6,08	-	0,0

Totale **19,5**

Hve: Coefficiente di scambio termico per ventilazione:

Nr.	Descrizione locale	Ventilazione	V _{netto} [m³]	q _{ve,0} [m³/h]	f _{ve,t} [-]	H _{ve} [W/K]
1	Cucina	Naturale	115,10	726,45	0,34	242,2
2	Bar	Naturale	120,03	247,32	0,55	82,4
3	Servizi	Naturale	53,54	34,27	0,08	11,4

Totale **336,0**

Legenda simboli

 $\begin{array}{ll} U & & \text{Trasmittanza termica dell'elemento disperdente} \\ \Psi & & \text{Trasmittanza termica lineica del ponte termico} \end{array}$

Sup. Superficie dell'elemento disperdente

Lungh. Lunghezza del ponte termico

b_{tr,X} Fattore di correzione dello scambio termico

V_{netto} Volume netto del locale

q_{ve,0} Portata minima di progetto di aria esterna

f_{ve,t} Fattore di correzione per la ventilazione in condizioni di riferimento

FABBISOGNO DI ENERGIA UTILE STAGIONE ESTIVA Sommario perdite e apporti

Zona 1 : Sala polifunzionale

Categoria DPR 412/93	E.4 (1)	-	Superficie esterna	713,00	m^2
Superficie utile	218,47	m^2	Volume lordo	1025,17	m^3
Volume netto	811,15	m^3	Rapporto S/V	0,70	m ⁻¹

Temperatura interna 26,0 °C Capacità termica specifica 145 kJ/m²K Apporti interni 8,00 W/m² Superficie totale 713,00 m²

Dispersioni, apporti e fabbisogno di energia utile:

Mese	Q _{C,tr} [kWh]	Q _{C,r} [kWh]	Q _{C,ve} [kWh]	Q _{C,ht} [kWh] _t	Q _{sol,k,w} [kWh]	Q _{int} [kWh]	Q _{gn} [kWh]	т [h]	η _{u, c} [-]	Q _{C,nd} [kWh]
Aprile	963	170	1959	3093	<i>503</i>	<i>587</i>	1090	38,8	0,352	0
Maggio	1373	291	3034	4698	1392	1300	2692	38,8	0,569	19
Giugno	441	425	1416	2282	1606	1258	2864	38,8	0,956	683
Luglio	320	340	1178	1838	1573	1300	2874	38,8	0,987	1060
Agosto	561	311	1535	2407	1327	1300	2627	38,8	0,916	422
Settembre	1357	270	2867	4494	982	1258	2240	38,8	0,497	6
Ottobre	614	71	1185	1869	153	<i>378</i>	530	38,8	0,284	0

Totali 5629 1877 13174 20680 7536 7383 14918 2190

Zona 2 : Bar / Cucina

Categoria DPR 412/93	E.4 (1)	-	Superficie esterna	348,42	m^2
Superficie utile	<i>87,57</i>	m^2	Volume lordo	412,05	m^3
Volume netto	288,68	m^3	Rapporto S/V	0,85	m ⁻¹
			6		
Temperatura interna	26,0	°C	Capacità termica specifica	145	kJ/m²K
Apporti interni	8,00	W/m ²	Superficie totale	348,42	m²

Dispersioni, apporti e fabbisogno di energia utile:

Mese	Q _{C,tr} [kWh]	Q _{C,r} [kWh]	Q _{C,ve} [kWh]	Q _{C,ht} [kWh] _t	Q _{sol,k,w} [kWh]	Q _{int} [kWh]	Q _{gn} [kWh]	т [h]	η _{u, c} [-]	Q _{C,nd} [kWh]
Maggio	<i>78</i>	26	<i>37</i> 6	480	48	118	166	32,1	0,345	0
Giugno	124	<i>157</i>	992	1272	254	504	<i>758</i>	32,1	0,593	3
Luglio	<i>75</i>	126	825	1025	246	521	767	32,1	0,732	16
Agosto	<i>7</i> 2	56	493	622	94	252	346	32,1	0,555	1
Totali	349	365	2685	3400	641	1396	203 <i>7</i>			20

Legenda simboli

 $Q_{C,tr}$ Energia dispersa per trasmissione dedotti gli apporti solari diretti attravesto le strutture opache $(Q_{sol,k,C})$

 $\begin{array}{ll} Q_{\text{C,r}} & \text{Energia dispersa per extraflusso} \\ Q_{\text{C,ve}} & \text{Energia dispersa per ventilazione} \\ Q_{\text{C,ht}} & \text{Totale energia dispersa} = Q_{\text{C,tr}} + Q_{\text{C,ve}} \end{array}$

 $Q_{\text{sol},k,w}$ Apporti solari attraverso gli elementi finestrati

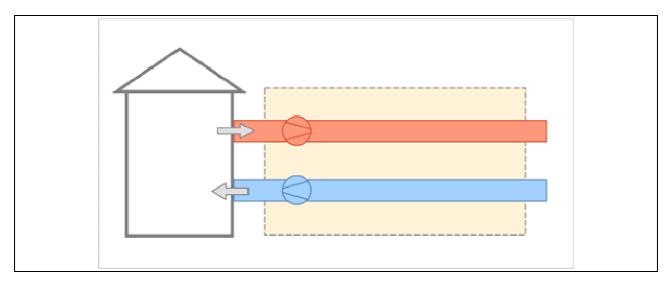
Q_{int} Apporti interni

 Q_{gn} Totale apporti gratuiti = $Q_{sol} + Q_{int}$

Q_{C,nd} Energia utile T Costante di tempo

 $\eta_{\text{u, C}}$ Fattore di utilizzazione delle dispersioni termiche

FABBISOGNO DI ENERGIA PRIMARIA secondo UNI/TS 11300-2 e UNI/TS 11300-4


SERVIZIO RISCALDAMENTO (impianto aeraulico)

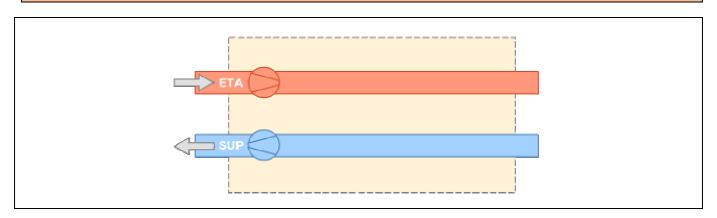
Zona 1 : Sala polifunzionale

Caratteristiche impianto aeraulico:

Tipo di impianto Ventilazione meccanica bilanciata

Dispositivi presenti Nessuno

Dati per il calcolo della ventilazione meccanica effettiva:


Ricambi d'aria a 50 Pa	n ₅₀	1	h ⁻¹
Coefficiente di esposizione al vento	е	0,10	-
Coefficiente di esposizione al vento	f	15,00	-
Fattore di efficienza della regolazione	$FC_{ve,H}$	1,00	-
Ore di funzionamento dell'impianto	hf	8,00	-

Portate dei locali

Zona	Nr.	Descrizione locale	Tipologia	q _{ve,sup} [m³/h]	q _{ve,ext} [m³/h]	q _{ve,0} [m³/h]
1	1	Sala polifunzionale	Immissione	1439,28	0,00	1439,28
			Totale	1439 28	0.00	1439 28

Caratteristiche dei condotti

Condotto di estrazione dagli ambienti (ETA):

Temperatura di estrazione da ambienti **0,0** °C

Potenza elettrica dei ventilatori **30** W

Portata del condotto **0,00** m³/h

Condotto di immissione negli ambienti (SUP):

Temperatura di immissione in ambienti 20,0 °C

Potenza elettrica dei ventilatori 30 W

Portata del condotto 1439,28 m³/h

Zona 1 : Sala polifunzionale

Modalità di funzionamento

Sala polifunzionale

Intermittenza

Regime di funzionamento Continuo

SERVIZIO RISCALDAMENTO (impianto idronico)

Rendimenti stagionali dell'impianto:

Descrizione	Simbolo	Valore	u.m.
Rendimento di emissione	η _{H,e}	94,0	%
Rendimento di regolazione	η _{H,rg}	97,0	%
Rendimento di distribuzione utenza	η _{H,du}	98,5	%
Rendimento di generazione (risp. a en. pr. non rinn.)	$\eta_{H,gen,p,nren}$	113,7	%
Rendimento di generazione (risp. a en. pr. totale)	η _{H,gen,p,tot}	91,6	%
Rendimento globale medio stagionale (risp. a en. pr. non rinn.)	η _{H,g,p,nren}	248,2	%
Rendimento globale medio stagionale (risp. a en. pr. totale)	η _{H,g,p,tot}	189,4	%

Dettaglio rendimenti dei singoli generatori:

Generatore	η _{H,gen,ut} [%]	η _{H,gen,p,nren} [%]	η _{H,gen,p,tot}
Pompa di calore - secondo UNI/TS 11300-4	221,7	113,7	91,6

Legenda simboli

 $\eta_{\text{H,gen,p,nren}}$ Rendimento di generazione rispetto all'energia primaria non rinnovabile

 $\eta_{\text{H},\text{gen},\text{p},\text{tot}}$ Rendimento di generazione rispetto all'energia primaria totale

Dati per circuito

Sala polifunzionale

Caratteristiche sottosistema di emissione:

Tipo di terminale di erogazione Bocchette in sistemi ad aria calda

Potenza nominale dei corpi scaldanti 12000 W
Fabbisogni elettrici 0 W
Rendimento di emissione 92,0 %

Caratteristiche sottosistema di regolazione:

Tipo **Per singolo ambiente + climatica**

Caratteristiche On off

Rendimento di regolazione 97,0 %

Caratteristiche sottosistema di distribuzione utenza:

Metodo di calcolo Semplificato

Tipo di impianto **Autonomo, edificio singolo**

Posizione impianto -

Posizione tubazioni Tubazioni incassate a pavimento con distribuzione a

collettori

Isolamento tubazioni

Isolamento con spessori conformi alle prescrizioni del

DPR n. 412/93

Numero di piani -

Fattore di correzione **0,51**Rendimento di distribuzione utenza **98,5** %
Fabbisogni elettrici **0** W

SOTTOSISTEMA DI GENERAZIONE

Dati generali:

Servizio **Riscaldamento**Tipo di generatore **Pompa di calore**

Metodo di calcolo secondo UNI/TS 11300-4

Marca/Serie/Modello TIPO di riferimento CLIVET CKN-XHE2i 10.1

Tipo di pompa di calore *Elettrica*

Temperatura di disattivazione $\theta_{H,off}$ 20,0 °C (per riscaldamento)

Temperatura di funzionamento (cut-off) minima -25,0 °C

massima **35,0** °C

Temperatura di funzionamento (cut-off) minima 15,0 °C

massima **25,0** °C

Temperatura della sorgente calda (riscaldamento) 25,0 °C

Prestazioni dichiarate:

Coefficiente di prestazione	COPe	4,1	
Potenza utile	P_{u}	29,80	kW
Potenza elettrica assorbita	P_{ass}	7,23	kW
Temperatura della sorgente fredda	θ_{f}	7	°C
Temperatura della sorgente calda	θ_{c}	20	°C

Fattori correttivi della pompa di calore:

Fattore di correzione Cd 0,25 -

Fattore minimo di modulazione Fmin 0,50 -

CR	0,0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
Fc	0,75	0,80	0,85	0,90	0,95	1,00	1,00	1,00	1,00	1,00	1,00

Legenda simboli

CR Fattore di carico macchina della pompa di calore

Fc Fattore correttivo della pompa di calore

Fabbisogni elettrici:

Potenza elettrica degli ausiliari indipendenti **0** W

Temperatura dell'acqua del generatore di calore:

Generatore di calore a temperatura scorrevole

Tipo di circuito **Collegamento diretto**

		GENERAZIONE							
Mese	giorni	θgn,avg [°C]	θgn,flw [°C]	θgn,ret [°C]					
ottobre	17	0,0	0,0	0,0					
novembre	30	0,0	0,0	0,0					
dicembre	31	0,0	0,0	0,0					
gennaio	31	0,0	0,0	0,0					

febbraio	28	0,0	0,0	0,0
marzo	31	0,0	0,0	0,0
aprile	15	0,0	0,0	0,0

Legenda simboli

 $\begin{array}{ll} \theta_{gn,avg} & \text{Temperatura media del generatore di calore} \\ \theta_{gn,flw} & \text{Temperatura di mandata del generatore di calore} \\ \theta_{gn,ret} & \text{Temperatura di ritorno del generatore di calore} \end{array}$

Vettore energetico:

Tipo Energia elettrica

Fattore di conversione in energia primaria (rinnovabile) $f_{p,ren}$ 0,470 - Fattore di conversione in energia primaria (non rinnovabile) $f_{p,nren}$ 1,950 - Fattore di conversione in energia primaria f_{p} 2,420 -

Fattore di emissione di CO₂ 0,4600 kg_{CO2}/kWh

RISULTATI DI CALCOLO MENSILI

Risultati mensili servizio riscaldamento - impianto ad aria

Zona 1 : Sala polifunzionale

Fabbisogni termici ed elettrici

		Fabbisogni termici								
Mese	gg	Q _{H,nd} [kWh]	Q _{H,sys,out} [kWh]	Q' _{H,sys,out} [kWh]	Q _{H,sys,out,int}	Q _{H,sys,out,cont}	Q _{H,sys,out,corr} [kWh]	Q _{H,gen,out} [kWh]	Q _{H,gen,in} [kWh]	
gennaio	31	8329	4264	4264	4264	4264	4264	4749	2281	
febbraio	28	6514	3107	3107	3107	3107	3107	3460	1634	
marzo	31	4239	1525	1525	1525	1525	1525	1698	710	
aprile	15	1036	220	220	220	220	220	245	84	
maggio	-	-	-	-	-	-	-	-	-	
giugno	-	-	-	-	-	-	-	-	-	
luglio	-	-	-	-	-	-	-	-	-	
agosto	-	-	-	-	-	_	-	-	-	
settembre	-	-	-	-	-	-	-	-	-	
ottobre	17	1589	535	535	535	535	535	596	184	
novembre	30	5802	2781	2781	2781	2781	2781	3098	1317	
dicembre	31	7816	4065	4065	4065	4065	4065	4528	2076	
TOTALI	183	35325	16496	16496	16496	16496	16496	18373	8288	

Legenda simboli

gg Giorni compresi nel periodo di calcolo per riscaldamento

 $\begin{array}{ll} Q_{\text{H},\text{nd}} & \text{Fabbisogno di energia termica utile del fabbricato (ventilazione naturale)} \\ Q_{\text{H},\text{sys},\text{out}} & \text{Fabbisogno di energia termica utile dell'edificio (ventilazione meccanica)} \end{array}$

Q'_{H,sys,out} Fabbisogno ideale netto

 $\begin{array}{lll} Q_{H,sys,out,int} & Fabbisogno \ corretto \ per \ intermittenza \\ Q_{H,sys,out,cont} & Fabbisogno \ corretto \ per \ contabilizzazione \\ Q_{H,sys,out,corr} & Fabbisogno \ corretto \ per \ ulteriori \ fattori \\ Q_{H,gen,out} & Fabbisogno \ in \ uscita \ dalla \ generazione \\ Q_{H,gen,in} & Fabbisogno \ in \ ingresso \ alla \ generazione \end{array}$

		Fabbisogni elettrici					
Mese gg		Q _{H,em,aux} [kWh]	Q _{H,du,aux} [kWh]	Q _{H,dp,aux} [kWh]	Q _{H,gen,aux} [kWh]		
gennaio	31	0	0	0	0		
febbraio	28	0	0	0	0		
marzo	31	0	0	0	0		
aprile	15	0	0	0	0		
maggio	1			-			
giugno	1	1	1	1	1		
luglio	1		1	1	1		
agosto	1			-	-		
settembre	-	-	-	-	-		
ottobre	17	0	0	0	0		
novembre	30	0	0	0	0		
dicembre	31	0	0	0	0		
TOTALI	183	0	0	0	0		

Legenda simboli

gg Giorni compresi nel periodo di calcolo per riscaldamento

Q_{H,em,aux} Fabbisogno elettrico ausiliari emissione

 $\begin{array}{ll} Q_{H,du,aux} & \quad & \text{Fabbisogno elettrico ausiliari distribuzione di utenza} \\ Q_{H,dp,aux} & \quad & \text{Fabbisogno elettrico ausiliari distribuzione primaria} \end{array}$

Q_{H,gen,aux} Fabbisogno elettrico ausiliari generazione

Dettagli impianto termico

Mese	99	η н,гд [%]	η н,а [%]	ŋ _{н,s} [%]	η н,dp [%]	η _{H,gen,p,nren} [%]	η _{H,gen,p,tot} [%]	η _{Η,g,p,nren} [%]	η _{н,g,p,tot} [%]
gennaio	31	97,0	98,5	100,0	100,0	106,7	86,0	199,0	156,3
febbraio	28	97,0	98,5	100,0	100,0	108,6	87,5	233,2	177,6
marzo	31	97,0	98,5	100,0	100,0	122,6	98,8	476,7	312,2
aprile	15	97,0	98,5	100,0	100,0	149,4	120,4	0,0	1232,4
maggio	-	-	-	-	-	-	-	-	-
giugno	-	-	-	-	-	-	-	-	-
luglio	-	-	-	-	-	-	-	-	-
agosto	-	-	-	-	-	-	-	-	-
settembre	1			1	-	-		-	
ottobre	17	97,0	98,5	100,0	100,0	166,1	133,8	831,7	491,7
novembre	30	97,0	98,5	100,0	100,0	120,6	97,2	248,2	192,1
dicembre	31	97,0	98,5	100,0	100,0	111,8	90,1	203,7	160,5

Legenda simboli

gg Giorni compresi nel periodo di calcolo per riscaldamento

 $\begin{array}{ll} \eta_{\text{H,rg}} & \text{Rendimento mensile di regolazione} \\ \eta_{\text{H,d}} & \text{Rendimento mensile di distribuzione} \\ \eta_{\text{H,s}} & \text{Rendimento mensile di accumulo} \end{array}$

 $\eta_{H,gen,p,nren}$ Rendimento mensile di generazione rispetto all'energia primaria non rinnovabile

 $\eta_{\text{H,g,p,nren}}$ Rendimento globale medio mensile rispetto all'energia primaria non rinnovabile

<u>Dettagli generatore</u>: 1 - Pompa di calore

Mese	99	Q _{H,gn,out} [kWh]	Q _{H,gn,in} [kWh]	η _{Η,gen,ut} [%]	η _{H,gen,p,nren} [%]	η _{Η,gen,p,tot} [%]	Combustibile [kWh]
gennaio	31	4749	2281	208,1	106,7	86,0	0
febbraio	28	3460	1634	211,7	108,6	87,5	0
marzo	31	1698	710	239,1	122,6	98,8	0
aprile	15	245	84	291,3	149,4	120,4	0
maggio	1	1	•	1	-	1	-
giugno	-	-	-	-	-	-	-
luglio	1	1	•	1	-	1	-
agosto	1	1	1	ı	-	1	-
settembre	1	1	1	ı	-	1	-
ottobre	17	596	184	323,9	166,1	133,8	0
novembre	30	3098	1317	235,2	120,6	97,2	0
dicembre	31	4528	2076	218,1	111,8	90,1	0

Mese	99	COP [-]
gennaio	31	2,08
febbraio	28	2,12
marzo	31	2,39
aprile	15	2,91
maggio	1	1
giugno	-	
luglio	1	1
agosto	1	1
settembre	-	-
ottobre	17	3,24
novembre	30	2,35
dicembre	31	2,18

 $\begin{array}{ll} gg & Giorni \ compresi \ nel \ periodo \ di \ calcolo \ per \ riscaldamento \\ Q_{H,gn,out} & Energia \ termica \ fornita \ dal \ generatore \ per \ riscaldamento \\ Q_{H,gn,in} & Energia \ termica \ in \ ingresso \ al \ generatore \ per \ riscaldamento \\ \eta_{H,gen,ut} & Rendimento \ mensile \ del \ generatore \ rispetto \ all'energia \ utile \end{array}$

 $\eta_{\text{H},\text{gen},p,\text{nren}} \qquad \qquad \text{Rendimento mensile del generatore rispetto all'energia primaria non rinnovabile}$

 $\eta_{\text{H},\text{gen},\text{p},\text{tot}}$ Rendimento mensile del generatore rispetto all'energia primaria totale

Combustibile Consumo mensile di combustibile

COP Coefficiente di effetto utile medio mensile

Fabbisogno di energia primaria impianto idronico

Mese	gg	Q _{н,gn,in} [kWh]	Q _{H,aux} [kWh]	Q _{H,p,nren} [kWh]	Q _{н,p,tot} [kWh]
gennaio	31	2281	2281	4185	5329
febbraio	28	1634	1634	2794	3669
marzo	31	710	710	889	1358
aprile	15	84	84	0	84
maggio	-	-	-	-	-
giugno	-	-	-	-	-
luglio	-	-	1	1	-
agosto	-	-	1	1	-

settembre	-	-	-	-	-
ottobre	17	184	184	191	323
novembre	30	1317	1317	2338	3020
dicembre	31	2076	2076	3837	4871
TOTALI	183	8288	8288	14234	18653

gg Giorni compresi nel periodo di calcolo per riscaldamento

 $Q_{H,gn,in}$ Energia termica totale in ingresso al sottosistema di generazione per riscaldamento

Q_{H,aux} Fabbisogno elettrico totale per riscaldamento

 $Q_{H,p,nren}$ Fabbisogno di energia primaria non rinnovabile per riscaldamento

Q_{H,p,tot} Fabbisogno di energia primaria totale per riscaldamento

Pannelli solari fotovoltaici

Energia elettrica da produzione fotovoltaica [kWh]:

Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Sett	Ott	Nov	Dic
304	490	904	1028	1315	1566	1525	1294	937	477	301	246

Fabbisogno di energia primaria non rinnovabile	$Q_{H,p,nren}$	14234	kWh/anno
Fabbisogno di energia primaria totale	$Q_{H,p,tot}$	186 5 3	kWh/anno
Rendimento globale medio stagionale (rispetto all'energia primaria non rinnovabile)	$\eta_{H,g,p,nren}$	248,2	%
Rendimento globale medio stagionale (rispetto all'energia primaria totale)	$\eta_{H,g,p,tot}$	189,4	%
Consumo di energia elettrica effettivo		<i>7</i> 300	kWh/anno

Zona 2 : Bar / Cucina

Modalità di funzionamento

Bar / Cucina

<u>Intermittenza</u>

Regime di funzionamento Continuo

SERVIZIO RISCALDAMENTO (impianto idronico)

Rendimenti stagionali dell'impianto:

Descrizione	Simbolo	Valore	u.m.
Rendimento di emissione	ηн,е	92,5	%
Rendimento di regolazione	η _{H,rg}	97,0	%
Rendimento di distribuzione utenza	η _{H,du}	98,5	%
Rendimento di generazione (risp. a en. pr. non rinn.)	η _{H,gen,p,nren}	137,0	%
Rendimento di generazione (risp. a en. pr. totale)	η _{H,gen,p,tot}	<i>65,3</i>	%
Rendimento globale medio stagionale (risp. a en. pr. non rinn.)	η _{H,g,p,nren}	137,0	%
Rendimento globale medio stagionale (risp. a en. pr. totale)	η _{H,g,p,tot}	59,2	%

Dettaglio rendimenti dei singoli generatori:

Generatore	η H,gen,ut	η _{H,gen,p,nren}	η _{H,gen,p,tot}
	[%]	[%]	[%]
Pompa di calore - secondo UNI/TS 11300-4	267,2	137,0	<i>65,3</i>

 $\eta_{\text{H,gen,ut}}$ Rendimento di generazione rispetto all'energia utile

 $\eta_{\text{H,gen,p,nren}}$ Rendimento di generazione rispetto all'energia primaria non rinnovabile

 $\eta_{\text{H,gen,p,tot}}$ Rendimento di generazione rispetto all'energia primaria totale

Dati per circuito

Bar / Cucina

Caratteristiche sottosistema di emissione:

Tipo di terminale di erogazione **Bocchette in sistemi ad aria calda**

Potenza nominale dei corpi scaldanti 5000 W Fabbisogni elettrici 150 W Rendimento di emissione 92,0 %

Caratteristiche sottosistema di regolazione:

Tipo Per singolo ambiente + climatica

Caratteristiche On off

Rendimento di regolazione 97,0 %

Caratteristiche sottosistema di distribuzione utenza:

Metodo di calcolo Semplificato

Tipo di impianto **Autonomo, edificio singolo**

Posizione impianto -

Posizione tubazioni Tubazioni incassate a pavimento con distribuzione a

collettori

Isolamento tubazioni Isolamento con spessori conformi alle prescrizioni del

DPR n. 412/93

Numero di piani -

Fattore di correzione **0,51**Rendimento di distribuzione utenza **98,5** %
Fabbisogni elettrici **0** W

SOTTOSISTEMA DI GENERAZIONE

Dati generali:

Servizio **Riscaldamento**Tipo di generatore **Pompa di calore**

Metodo di calcolo secondo UNI/TS 11300-4

Marca/Serie/Modello TIPO di riferimento CLIVET/Mini VRF/MSAN-XMi 120M

Tipo di pompa di calore *Elettrica*

Temperatura di disattivazione $\theta_{H,off}$ 20,0 °C (per riscaldamento)

Temperatura di funzionamento (cut-off) minima -13,7 °C

massima **27,0** °C

Temperatura di funzionamento (cut-off) minima 15,0 °C

massima **28,0** °C

Temperatura della sorgente calda (riscaldamento) 25,0 °C

Prestazioni dichiarate:

Coefficiente di prestazione COP

Temperatura sorgente	Temperatura sorgente calda θ_c [°C]				
fredda θ _f [°C]	20	-	-		
-7	2,77	1	-		
2	3,27	-	-		
7	3,80	-	-		
12	4,41	-	-		

Potenza utile Pu [kW]

Temperatura sorgente	Temperatura sorgente calda θ_c [°C]				
fredda θ _f [°C]	20	-	-		
-7	10,90	1	-		
2	13,13	1	-		
7	13,20	1	-		
12	13,20	-	-		

Potenza assorbita Pass [kW]

Temperatura sorgente	Temperatura sorgente calda θ_c [°C]				
fredda θ _f [°C]	20	-	•		
-7	3,94	-	-		
2	4,02	-	-		
7	3,47	-	-		
12	2,99	-	-		

Fattori correttivi della pompa di calore:

Fattore di correzione Cd 0,25 -

Fattore minimo di modulazione Fmin 0,20

CR	0,0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
Fc	0,75	0,88	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00

Legenda simboli

W

CR Fattore di carico macchina della pompa di calore

Fc Fattore correttivo della pompa di calore

Fabbisogni elettrici:

Potenza elettrica degli ausiliari indipendenti

Temperatura dell'acqua del generatore di calore:

Generatore di calore a temperatura scorrevole

Tipo di circuito Collegamento diretto

		G	GENERAZIONE					
Mese	giorni	θgn,avg [°C]	θgn,flw [°C]	θgn,ret [°C]				
ottobre	17	0,0	0,0	0,0				
novembre	30	0,0	0,0	0,0				
dicembre	31	0,0	0,0	0,0				
gennaio	31	0,0	0,0	0,0				
febbraio	28	0,0	0,0	0,0				
marzo	31	0,0	0,0	0,0				
aprile	15	0,0	0,0	0,0				

Legenda simboli

 $\begin{array}{ll} \theta_{gn,avg} & \text{Temperatura media del generatore di calore} \\ \theta_{gn,flw} & \text{Temperatura di mandata del generatore di calore} \\ \theta_{gn,ret} & \text{Temperatura di ritorno del generatore di calore} \end{array}$

Vettore energetico:

Tipo Energia elettrica

Fattore di conversione in energia primaria (rinnovabile) $f_{p,ren}$ 0,470 - Fattore di conversione in energia primaria (non rinnovabile) $f_{p,nren}$ 1,950 - Fattore di conversione in energia primaria f_p 2,420 -

Fattore di emissione di CO₂ 0,4600 kg_{CO2}/kWh

RISULTATI DI CALCOLO MENSILI

Risultati mensili servizio riscaldamento - impianto idronico

Zona 2 : Bar / Cucina

Fabbisogni termici ed elettrici

					Fabbisog	ni termici			
Mese	99	Q _{H,nd} [kWh]	Q _{H,sys,out} [kWh]	Q' _{H,sys,out} [kWh]	Q _{H,sys,out,int} [kWh]	Q _{H,sys,out,cont} [kWh]	Q _{H,sys,out,corr} [kWh]	Q _{H,gen,out} [kWh]	Q _{H,gen,in} [kWh]
gennaio	31	5336	5336	5322	5322	5322	5322	6023	2328
febbraio	28	4400	4400	4387	4387	4387	4387	4966	1892
marzo	31	3362	3362	3348	3348	3348	3348	<i>37</i> 90	1384
aprile	15	1035	1035	1028	1028	1028	1028	1164	405
maggio	-	-	-	-	1	1	-	_	-
giugno	-	-	-	-	-	-	-	-	-
luglio	-	-	-	-	-	-	-	-	-
agosto	-	-	-	-	-	-	-	-	-
settembre	-	-	-	-	-	-	-	-	-
ottobre	17	1236	1236	1228	1228	1228	1228	1390	475
novembre	30	3842	3842	3828	3828	3828	3828	4333	1594
dicembre	31	4963	4963	4949	4949	4949	4949	5601	2127
TOTALI	183	24174	24174	24090	24090	24090	24090	27266	10205

Legenda simboli

gg Giorni compresi nel periodo di calcolo per riscaldamento

 $\begin{array}{ll} Q_{H,nd} & \quad \text{Fabbisogno di energia termica utile del fabbricato (ventilazione naturale)} \\ Q_{H,sys,out} & \quad \text{Fabbisogno di energia termica utile dell'edificio (ventilazione meccanica)} \end{array}$

Q'_{H,sys,out} Fabbisogno ideale netto

 $\begin{array}{lll} Q_{\text{H,sys,out,int}} & \text{Fabbisogno corretto per intermittenza} \\ Q_{\text{H,sys,out,cont}} & \text{Fabbisogno corretto per contabilizzazione} \\ Q_{\text{H,sys,out,corr}} & \text{Fabbisogno corretto per ulteriori fattori} \\ Q_{\text{H,gen,in}} & \text{Fabbisogno in uscita dalla generazione} \\ Q_{\text{H,gen,in}} & \text{Fabbisogno in ingresso alla generazione} \end{array}$

			Fabbisogr	ni elettrici	
Mese	99	Q _{H,em,aux} [kWh]	Q _{H,du,aux} [kWh]	Q _{H,dp,aux} [kWh]	Q _{H,gen,aux} [kWh]
gennaio	31	160	0	0	0
febbraio	28	132	0	0	0
marzo	31	100	0	0	0
aprile	15	31	0	0	0
maggio	-	-	-	1	1
giugno	-	-	-	1	1
luglio	-	-	-	1	1
agosto	-	-	-	1	1
settembre	1			1	1
ottobre	17	<i>37</i>	0	0	0
novembre	30	115	0	0	0
dicembre	31	148	0	0	0

TOTALI 183 723 0 0	0
--------------------	---

gg Giorni compresi nel periodo di calcolo per riscaldamento

Q_{H,em,aux} Fabbisogno elettrico ausiliari emissione

Q_{H,du,aux} Fabbisogno elettrico ausiliari distribuzione di utenza Q_{H,dp,aux} Fabbisogno elettrico ausiliari distribuzione primaria

 $Q_{H,gen,aux}$ Fabbisogno elettrico ausiliari generazione

Dettagli impianto termico

Mese	99	η н,гд [%]	η н,а [%]	ŋ _{н,s} [%]	η н,dp [%]	η _{H,gen,p,nren} [%]	η _{H,gen,p,tot}	η _{Η,g,p,nren} [%]	η _{н,g,p,tot} [%]
gennaio	31	97,0	98,5	100,0	100,0	132,7	64,1	116,9	55,7
febbraio	28	97,0	98,5	100,0	100,0	134,6	64,6	127,2	57,5
marzo	31	97,0	98,5	100,0	100,0	140,4	66,3	181,0	64,6
aprile	15	97,0	98,5	100,0	100,0	147,3	68,1	0,0	88,9
maggio	-	-	-	-	-	-		-	-
giugno	-	-	-	-	-	-	-	-	-
luglio	-	-	-	-	-	-	-	-	-
agosto	-	-	-	-	-	-	-	-	-
settembre	-	-	-	-	-	-	-	-	-
ottobre	17	97,0	98,5	100,0	100,0	149,9	68,8	232,4	69,8
novembre	30	97,0	98,5	100,0	100,0	139,4	66,0	126,7	58,0
dicembre	31	97,0	98,5	100,0	100,0	135,1	64,7	118,0	56,1

Legenda simboli

gg Giorni compresi nel periodo di calcolo per riscaldamento

 $\begin{array}{ll} \eta_{\text{H,rg}} & \text{Rendimento mensile di regolazione} \\ \eta_{\text{H,d}} & \text{Rendimento mensile di distribuzione} \\ \eta_{\text{H,s}} & \text{Rendimento mensile di accumulo} \end{array}$

η_{H,gen,p,nren} Rendimento mensile di generazione rispetto all'energia primaria non rinnovabile

 $\eta_{H,gen,p,tot}$ Rendimento mensile di generazione rispetto all'energia primaria totale

 $\eta_{H,g,p,nren} \qquad \text{Rendimento globale medio mensile rispetto all'energia primaria non rinnovabile}$

 $\eta_{H,g,p,tot}$ Rendimento globale medio mensile rispetto all'energia primaria totale

<u>Dettagli generatore</u>: 1 - Pompa di calore

Mese	99	Q _{H,gn,out} [kWh]	Q _{H,gn,in} [kWh]	η н,gen,ut [%]	η н,gen,p,nren [%]	η н,gen,p,tot [%]	Combustibile [kWh]
gennaio	31	6023	2328	258,7	132,7	64,1	0
febbraio	28	4966	1892	262,4	134,6	64,6	0
marzo	31	3790	1384	273,8	140,4	66,3	0
aprile	15	1164	405	287,3	147,3	68,1	0
maggio	-	-	-	-	-	-	-
giugno	-	-	-	-	-	-	-
luglio	-	-	-	-	-	-	-
agosto	-	-	-	-	-	-	-
settembre	-	-	-	-	-	-	-
ottobre	17	1390	475	292,3	149,9	68,8	0
novembre	30	4333	1594	271,9	139,4	66,0	0
dicembre	31	5601	2127	263,3	135,1	64,7	0

Mese gg COP

		[-]
gennaio	31	2,59
febbraio	28	2,62
marzo	31	2,74
aprile	15	2,87
maggio	1	1
giugno	1	1
luglio	1	1
agosto	1	1
settembre	1	1
ottobre	17	2,92
novembre	30	2,72
dicembre	31	2,63

 $\begin{array}{ll} gg & Giorni \ compresi \ nel \ periodo \ di \ calcolo \ per \ riscaldamento \\ Q_{H,gn,out} & Energia \ termica \ fornita \ dal \ generatore \ per \ riscaldamento \\ Q_{H,gn,in} & Energia \ termica \ in \ ingresso \ al \ generatore \ per \ riscaldamento \\ \eta_{H,gen,ut} & Rendimento \ mensile \ del \ generatore \ rispetto \ all'energia \ utile \end{array}$

 $\eta_{\text{H},\text{gen},p,\text{nren}} \qquad \qquad \text{Rendimento mensile del generatore rispetto all'energia primaria non rinnovabile}$

 $\eta_{H,gen,p,tot}$ Rendimento mensile del generatore rispetto all'energia primaria totale

Combustibile Consumo mensile di combustibile

COP Coefficiente di effetto utile medio mensile

Fabbisogno di energia primaria impianto idronico

Mese	99	Q _{H,gn,in} [kWh]	Q _{H,aux} [kWh]	Q _{H,p,nren} [kWh]	Q _{H,p,tot} [kWh]
gennaio	31	2328	2488	4564	9580
febbraio	28	1892	2024	3459	7650
marzo	31	1384	1484	1858	5208
aprile	15	405	436	0	1164
maggio	-	-	-	-	-
giugno	-	-	-	-	-
luglio	-	-	-	-	-
agosto	-	-	-	-	-
settembre	-	-	-	-	-
ottobre	17	475	512	532	1769
novembre	30	1594	1709	3033	6628
dicembre	31	2127	2275	4205	8842
TOTALI	183	10205	10928	17651	40843

Legenda simboli

gg Giorni compresi nel periodo di calcolo per riscaldamento

Q_{H,gn,in} Energia termica totale in ingresso al sottosistema di generazione per riscaldamento

Q_{H,aux} Fabbisogno elettrico totale per riscaldamento

Q_{H,p,nren} Fabbisogno di energia primaria non rinnovabile per riscaldamento

Q_{H,p,tot} Fabbisogno di energia primaria totale per riscaldamento

Pannelli solari fotovoltaici

Energia elettrica da produzione fotovoltaica [kWh]:

Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Sett	Ott	Nov	Dic
304	490	904	1028	1315	1566	1525	1294	937	477	301	246

Fabbisogno di energia primaria non rinnovabile	$Q_{H,p,nren}$	17651	kWh/anno
Fabbisogno di energia primaria totale	$Q_{H,p,tot}$	40843	kWh/anno
Rendimento globale medio stagionale (rispetto all'energia primaria non rinnovabile)	$\eta_{H,g,p,nren}$	137,0	%
Rendimento globale medio stagionale (rispetto all'energia primaria totale)	η _{H,g,p,tot}	59,2	%
Consumo di energia elettrica effettivo		9052	kWh/anno

FABBISOGNO DI ENERGIA PRIMARIA secondo UNI/TS 11300-3

Zona 1 : Sala polifunzionale

Modalità di funzionamento dell'impianto:

Continuato

SERVIZIO RAFFRESCAMENTO

Rendimenti stagionali dell'impianto:

Descrizione	Simbolo	Valore	u.m.
Rendimento di emissione	η _{C,e}	97,0	%
Rendimento di regolazione	η _{C,rg}	94,0	%
Rendimento di distribuzione	η _{C,d}	100,0	%
Rendimento di generazione (risp. a en. utile)	η _{C,gen,ut}	367,0	%
Rendimento di generazione (risp. a en. pr. non rinn.)	$\eta_{\text{C,gen,p,nren}}$	188,2	%
Rendimento di generazione (risp. a en. pr. non tot.)	$\eta_{\text{C,gen,p,tot}}$	151,7	%
Rendimento globale medio stagionale (risp. a en. pr. non rinn.)	$\eta_{\text{C,g,p,nren}}$	10473,6	%
Rendimento globale medio stagionale (risp. a en. pr. tot.)	$\eta_{C,g,p,tot}$	63,4	%

Caratteristiche sottosistema di emissione:

Bocchette in sistemi ad aria canalizzata, anemostati, Tipo di terminale di erogazione

diffusori lineari a soffitto, terminali sistemi di

dislocamento

Fabbisogni elettrici 0 W

Caratteristiche sottosistema di regolazione:

Tipo Controllo singolo ambiente

Caratteristiche Regolazione ON-OFF

SOTTOSISTEMA DI GENERAZIONE

Dati generali:

Servizio Raffrescamento Tipo di generatore Pompa di calore

Metodo di calcolo secondo UNI/TS 11300-3

TIPO di riferimento CLIVET CKN-XHE2i 10.1 Marca/Serie/Modello

Tipo di pompa di calore **Elettrica**

Potenza frigorifera nominale **30,40** kW $\Phi_{\text{gn,nom}}$

Sorgente unità esterna Aria

Temperatura bulbo secco aria esterna [°C]

Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
1,9	3,2	7,7	12,4	17,5	21,9	22,7	21,7	17,7	13,0	6,1	3,3

Sorgente unità interna Aria

Temperatura bulbo umido aria 19,0 °C

Prestazioni dichiarate:

Fk [%]	100%	75%	50%	25%	20%	15%	10%	5%	2%	1%
EER [-]	3,67	4,21	6,10	6,65	6,25	5,65	4,85	3,33	1,73	0,93

Legenda simboli

Fk Fattore di carico della pompa di calore EER Prestazione della pompa di calore

Dati unità esterna:

Percentuale portata d'aria dei canali 100,0 % (valore rispetto alla portata nominale)

Assenza di setti insonorizzati

Dati unità interna:

Velocità ventilatore Alta

Percentuale portata d'aria nei canali 100,0 % (valore rispetto alla portata nominale)

Lunghezza tubazione di aspirazione **7,50** m

Fabbisogni elettrici:

Potenza elettrica degli ausiliari 0 W

Vettore energetico:

Tipo Energia elettrica

Fattore di conversione in energia primaria (rinnovabile) $f_{p,ren}$ 0,470 - Fattore di conversione in energia primaria (non rinnovabile) $f_{p,nren}$ 1,950 - Fattore di conversione in energia primaria f_{p} 2,420 -

Fattore di emissione di CO₂ 0,4600 kg_{CO2}/kWh

RISULTATI DI CALCOLO MENSILI

Risultati mensili servizio raffrescamento

Zona 1 : Sala polifunzionale

Fabbisogni termici

Mese	99	Q _{C,nd} [kWh]	Qc,sys,out [kWh]	Q _{C,sys,out,cont}	Q _{C,sys,out,corr} [kWh]	Q _{cr} [kWh]	Q _v [kWh]	Q _{C,gen,out} [kWh]	Qc,gen,in [kWh]
gennaio	-	-	-	-	-	-	-	-	-
febbraio	-	-	-	-	-	-	-	-	-
marzo	10	0	3	3	3	3	0	3	1
aprile	30	0	74	74	74	81	0	81	22
maggio	31	19	1031	1031	1031	1131	0	1131	308

giugno	30	683	1998	1998	1998	2192	443	2635	718
luglio	31	1060	2214	2214	2214	2428	1926	4354	1186
agosto	31	422	1755	1755	1755	1925	1735	3660	997
settembre	30	6	624	624	624	684	57	742	202
ottobre	14	0	8	8	8	8	0	8	2
novembre	-	-	-	-	-	-	-	-	-
dicembre	-	-	-	-	-	-	-	-	-
TOTALI	207	2190	7707	7707	7707	8453	4162	12614	3437

gg Giorni compresi nel periodo di calcolo per raffrescamento

Q_{C,nd} Fabbisogno di energia termica utile del fabbricato (ventilazione naturale) Q_{C,sys,out} Fabbisogno di energia termica utile dell'edificio (ventilazione meccanica)

 $\begin{array}{lll} Q_{\text{C,sys,out,cont}} & \text{Fabbisogno corretto per contabilizzazione} \\ Q_{\text{C,sys,out,corr}} & \text{Fabbisogno corretto per ulteriori fattori} \\ Q_{\text{cr}} & \text{Fabbisogno effettivo di energia termica} \\ Q_{\text{V}} & \text{Fabbisogno per il trattamento dell'aria} \\ Q_{\text{C,gen,out}} & \text{Fabbisogno in uscita dalla generazione} \\ Q_{\text{C,gen,in}} & \text{Fabbisogno in ingresso alla generazione} \end{array}$

Fabbisogni elettrici

Mese	99	Q _{C,em,aux} [kWh]	Q _{C,du,aux} [kWh]	Q _{C,dp,aux} [kWh]	Q _{C,gen,aux} [kWh]
gennaio	1	1	-	1	-
febbraio	-				-
marzo	10	0	0	0	0
aprile	30	0	0	0	0
maggio	31	0	0	0	0
giugno	30	0	0	0	0
luglio	31	0	0	0	0
agosto	31	0	0	0	0
settembre	30	0	0	0	0
ottobre	14	0	0	0	0
novembre	-	-	-	-	-
dicembre	-	-	-	-	-
TOTALI	207	0	0	0	0

Legenda simboli

gg Giorni compresi nel periodo di calcolo per raffrescamento

 $Q_{\text{C,em,aux}} \qquad \quad \text{Fabbisogno elettrico ausiliari emissione} \\$

 $\begin{array}{ll} Q_{\text{C,du,aux}} & \text{Fabbisogno elettrico ausiliari distribuzione di utenza} \\ Q_{\text{C,dp,aux}} & \text{Fabbisogno elettrico ausiliari distribuzione primaria} \end{array}$

Q_{C,gen,aux} Fabbisogno elettrico ausiliari generazione

Dettagli impianto termico

Mese	99	Fk [-]	η _{с,rg} [%]	η _{c,d} [%]	η _{C,s} [%]	η _{c,dp} [%]	η _{C,gen,ut} [%]	η _{C,gen,p,nren} [%]	η _{C,gen,p,tot}	η _{c,g,p,nren} [%]	η _{C,g,p,tot} [%]
gennaio	-	-	-	-	-	-	-	-	-	-	-
febbraio	-	-	-	-	-	-	-	-	-	-	_
marzo	10	0,00	94,0	-	-	-	367,0	188,2	151,7	0,0	0,0
aprile	30	0,00	94,0	-	-	-	367,0	188,2	151,7	0,0	1,4
maggio	31	0,05	94,0	-	-	-	367,0	188,2	151,7	0,0	6,0
giugno	30	0,12	94,0	-	-	-	367,0	188,2	151,7	0,0	95,1
luglio	31	0,19	94,0	-	-	-	367,0	188,2	151,7	0,0	89,4

agosto	31	0,16	94,0	-	-	-	367,0	188,2	151,7	2403,9	41,8
settembre	<i>30</i>	0,03	94,0	-	-	-	367,0	188,2	151,7	0,0	3,2
ottobre	14	0,00	94,0	-	-	-	367,0	188,2	151,7	1,4	0,8
novembre	1	-	-	-	-	-		1	1	-	-
dicembre	1	-	-	-	-	-		1	1	-	-

gg Giorni compresi nel periodo di calcolo per raffrescamento

 $\begin{array}{ll} Fk & \text{Fattore di carico della pompa di calore} \\ \eta_{C,rg} & \text{Rendimento mensile di regolazione} \\ \eta_{C,d} & \text{Rendimento mensile di distribuzione} \\ \eta_{C,s} & \text{Rendimento mensile di accumulo} \end{array}$

 $\eta_{C,dp}$ Rendimento mensile di distribuzione primaria

 $\eta_{\text{C,gen,ut}}$ Rendimento mensile di generazione rispetto all'energia utile

 $\eta_{\text{C,gen,p,nren}}$ Rendimento mensile di generazione rispetto all'energia primaria non rinnovabile

 $\eta_{C,qen,p,tot}$ Rendimento mensile di generazione rispetto all'energia primaria totale

 $\eta_{C,g,p,nren}$ Rendimento globale medio mensile rispetto all'energia primaria non rinnovabile

ης,q,p,tot Rendimento globale medio mensile rispetto all'energia primaria totale

Fabbisogno di energia primaria

Mese	gg	Qc,gn,in [kWh]	Q _{C,aux} [kWh]	Qc,p,nren [kWh]	Q _{C,p,tot} [kWh]	Combustibile [kWh]
gennaio	-	-	-	-	-	-
febbraio	-	-	-	-	-	-
marzo	10	1	1	1	1	0
aprile	30	22	22	0	22	0
maggio	31	308	308	0	308	0
giugno	30	718	718	0	718	0
luglio	31	1186	1186	0	1186	0
agosto	31	997	997	18	1010	0
settembre	30	202	202	0	202	0
ottobre	14	2	2	2	4	0
novembre	-	-	-	-	-	-
dicembre	-	-	-	-	-	-
TOTALI	207	3437	3437	21	3452	0

Legenda simboli

gg Giorni compresi nel periodo di calcolo per raffrescamento

Qc,gn,in Energia termica in ingresso al sottosistema di generazione per raffrescamento

Q_{C,aux} Fabbisogno elettrico totale per raffrescamento

 $Q_{C,p,nren}$ Fabbisogno di energia primaria non rinnovabile per raffrescamento

Q_{C,p,tot} Fabbisogno di energia primaria totale per raffrescamento

Pannelli solari fotovoltaici

Energia elettrica da produzione fotovoltaica [kWh]:

Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Sett	Ott	Nov	Dic
304	490	904	1028	1315	1566	1525	1294	937	477	301	246

Fabbisogno di energia primaria non rinnovabile kWh/anno $Q_{C,p,nren}$ Fabbisogno di energia primaria totale Q_{C,p,tot} kWh/anno Rendimento globale medio stagionale 10473.6 $\eta_{C,g,p,nren}$ (rispetto all'energia primaria non rinnovabile) Rendimento globale medio stagionale 63,4 $\eta_{C,g,p,tot}$ (rispetto all'energia primaria totale) Consumo di energia elettrica effettivo kWh/anno 11

FABBISOGNO DI ENERGIA PRIMARIA

secondo UNI/TS 11300-3

Zona 2 : Bar / Cucina

Modalità di funzionamento dell'impianto:

Continuato

SERVIZIO RAFFRESCAMENTO

Rendimenti stagionali dell'impianto:

Descrizione	Simbolo	Valore	u.m.
Rendimento di emissione	η _{C,e}	97,0	%
Rendimento di regolazione	η _{C,rg}	98,0	%
Rendimento di distribuzione	η _{C,d}	100,0	%
Rendimento di generazione (risp. a en. utile)	η _{C,gen,ut}	378,0	%
Rendimento di generazione (risp. a en. pr. non rinn.)	η _{C,gen,p,nren}	193,8	%
Rendimento di generazione (risp. a en. pr. non tot.)	η _{C,gen,p,tot}	156,2	%
Rendimento globale medio stagionale (risp. a en. pr. non rinn.)	$\eta_{\text{C,g,p,nren}}$	974939,3	%
Rendimento globale medio stagionale (risp. a en. pr. tot.)	$\eta_{C,g,p,tot}$	633,8	%

Caratteristiche sottosistema di emissione:

Bocchette in sistemi ad aria canalizzata, anemostati,

Tipo di terminale di erogazione diffusori lineari a soffitto, terminali sistemi di

dislocamento

Fabbisogni elettrici **0** W

Caratteristiche sottosistema di regolazione:

Tipo Controllo singolo ambiente

Caratteristiche **Regolazione modulante (banda 1°C)**

SOTTOSISTEMA DI GENERAZIONE

Dati generali:

Servizio Raffrescamento
Tipo di generatore Pompa di calore

Metodo di calcolo secondo UNI/TS 11300-3

Marca/Serie/Modello TIPO di riferimento CLIVET/Mini VRF/MSAN-XMi 120M

Tipo di pompa di calore *Elettrica*

Potenza frigorifera nominale $\Phi_{gn,nom}$ **12,30** kW

Sorgente unità esterna Aria

Temperatura bulbo secco aria esterna [°C]

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
I	1,9	3,2	7,7	12,4	17,5	21,9	22,7	21,7	17,7	13,0	6,1	3,3

Sorgente unità interna Aria

Temperatura bulbo umido aria 19,0 °C

Prestazioni dichiarate:

Fk [%]	100%	75%	50%	25%	20%	15%	10%	5%	2%	1%
EER [-]	3,78	4,80	<i>5,78</i>	7,09	6,66	6,03	5,18	3,55	1,84	0,99

Legenda simboli

Fk Fattore di carico della pompa di calore EER Prestazione della pompa di calore

<u>Dati unità esterna</u>:

Percentuale portata d'aria dei canali 100,0 % (valore rispetto alla portata nominale)

Assenza di setti insonorizzati

Dati unità interna:

Velocità ventilatore *Media*

Percentuale portata d'aria nei canali 100,0 % (valore rispetto alla portata nominale)

Lunghezza tubazione di aspirazione 3,00 m

Fabbisogni elettrici:

Potenza elettrica degli ausiliari 0 W

Vettore energetico:

Tipo Energia elettrica

Fattore di conversione in energia primaria (rinnovabile) $f_{p,ren}$ 0,470 - Fattore di conversione in energia primaria (non rinnovabile) $f_{p,nren}$ 1,950 - Fattore di conversione in energia primaria f_p 2,420 -

Fattore di emissione di CO₂ kg_{CO2}/kWh

RISULTATI DI CALCOLO MENSILI

Risultati mensili servizio raffrescamento

Zona 2 : Bar / Cucina

Fabbisogni termici

Mese	99	Q _{C,nd} [kWh]	Q _{C,sys,out} [kWh]	Q _{C,sys,out,cont}	Q _{C,sys,out,corr} [kWh]	Q _{cr} [kWh]	Q _v [kWh]	Q _{C,gen,out} [kWh]	Qc,gen,in [kWh]
gennaio	-	1	1	-	1	1	1	1	1
febbraio	-	-	-	-	-	-	-	-	-
marzo	-	-	-	-	-	-	-	-	-

aprile	_	_	-	-	-	-	-	-	_
maggio	2	0	0	0	0	0	0	0	0
giugno	30	3	2	2	2	2	0	2	0
luglio	31	16	9	9	9	10	0	10	3
agosto	15	1	0	0	0	0	0	0	0
settembre	-	-	-	-	-	-	-	-	-
ottobre	1	1	1	1	1	-	1	-	1
novembre	1	1	-	1	-	-	1	-	1
dicembre	1	1	1	1	-	-	1	-	-
TOTALI	<i>78</i>	20	11	11	11	12	0	12	3

gg Giorni compresi nel periodo di calcolo per raffrescamento

Q_{C,nd} Fabbisogno di energia termica utile del fabbricato (ventilazione naturale) Q_{C,sys,out} Fabbisogno di energia termica utile dell'edificio (ventilazione meccanica)

 $\begin{array}{lll} Q_{\text{C,sys,out,cont}} & \text{Fabbisogno corretto per contabilizzazione} \\ Q_{\text{C,sys,out,corr}} & \text{Fabbisogno corretto per ulteriori fattori} \\ Q_{\text{cr}} & \text{Fabbisogno effettivo di energia termica} \\ Q_{\text{v}} & \text{Fabbisogno per il trattamento dell'aria} \\ Q_{\text{C,gen,out}} & \text{Fabbisogno in uscita dalla generazione} \\ Q_{\text{C,gen,in}} & \text{Fabbisogno in ingresso alla generazione} \end{array}$

Fabbisogni elettrici

Mese	99	Q _{C,em,aux} [kWh]	Q _{C,du,aux} [kWh]	Q _{C,dp,aux} [kWh]	Q _{C,gen,aux} [kWh]
gennaio	-	-	1	1	1
febbraio	-		1	1	1
marzo	-	-	-	-	-
aprile	-	-	-	-	-
maggio	2	0	0	0	0
giugno	30	0	0	0	0
luglio	31	0	0	0	0
agosto	15	0	0	0	0
settembre	-	-	-	-	-
ottobre	-		1	1	-
novembre	-	-	-	-	-
dicembre	-	-	-	-	-
TOTALI	<i>78</i>	0	0	0	0

Legenda simboli

gg Giorni compresi nel periodo di calcolo per raffrescamento

Q_{C,em,aux} Fabbisogno elettrico ausiliari emissione

 $\begin{array}{ll} Q_{C,du,aux} & \quad \text{Fabbisogno elettrico ausiliari distribuzione di utenza} \\ Q_{C,dp,aux} & \quad \text{Fabbisogno elettrico ausiliari distribuzione primaria} \end{array}$

Q_{C,gen,aux} Fabbisogno elettrico ausiliari generazione

Dettagli impianto termico

Mese	99	Fk [-]	η _{с,rg} [%]	η _{c,d} [%]	η _{c,s} [%]	η _{C,dp} [%]	η _{C,gen,ut} [%]	η _{C,gen,p,nren} [%]	η _{C,gen,p,tot}	η _{C,g,p,nren} [%]	η _{C,g,p,tot} [%]
gennaio	1	1	1	-	-	1	-	-	1	-	-
febbraio	-	-	-	-	-	-	-	-	-	-	-
marzo	-	-	-	-	-	-	-	-	-	-	-
aprile	-	-	-	-	-	-	-	-	-	-	-

maggio	2	0,00	98,0	_	_	_	378,0	193,8	156,2	0,0	1825,4
							-			,	
giugno	30	0,00	98,0	-	-	-	378,0	193,8	156,2	0,0	665,5
luglio	31	0,00	98,0	1	-	1	378,0	193,8	156,2	255805 298480 15600, 0	622,1
agosto	15	0,00	98,0	-	-	-	378,0	193,8	156,2	43255, 0	751,7
settembre	1	1	1	1	-	1	-	1	1	1	1
ottobre	1	1	1	1	-	1	-	1	1	1	1
novembre	1	1	1	1	-	1	-	1	1	1	1
dicembre	1	1	1	1	-	1	-	1	1	1	1

gg Giorni compresi nel periodo di calcolo per raffrescamento

 $\begin{array}{ll} Fk & \text{Fattore di carico della pompa di calore} \\ \eta_{C,rg} & \text{Rendimento mensile di regolazione} \\ \eta_{C,d} & \text{Rendimento mensile di distribuzione} \\ \eta_{C,s} & \text{Rendimento mensile di accumulo} \end{array}$

 $\eta_{\text{C,dp}}$ Rendimento mensile di distribuzione primaria

 $\eta_{C,gen,ut}$ Rendimento mensile di generazione rispetto all'energia utile

 $\eta_{\text{C,gen,p,nren}}$ Rendimento mensile di generazione rispetto all'energia primaria non rinnovabile

 $\eta_{C,g,p,nren}$ Rendimento globale medio mensile rispetto all'energia primaria non rinnovabile

η_{C,g,p,tot} Rendimento globale medio mensile rispetto all'energia primaria totale

Fabbisogno di energia primaria

Mese	gg	Q _{C,gn,in} [kWh]	Q _{C,aux} [kWh]	Q _{C,p,nren} [kWh]	Q _{C,p,tot} [kWh]	Combustibile [kWh]
gennaio	1	1	1	-	-	•
febbraio	-	-	-	-	-	-
marzo	-	-	-	-	-	-
aprile	-	-	-	-	-	-
maggio	2	0	0	0	0	0
giugno	30	0	0	0	0	0
luglio	31	3	3	0	3	0
agosto	15	0	0	0	0	0
settembre	-	-	-	-	-	-
ottobre	-	-	-	-	-	-
novembre	-	-	-	-	-	-
dicembre	-	-	-	-	-	-
TOTALI	<i>7</i> 8	3	3	0	3	0

Legenda simboli

gg Giorni compresi nel periodo di calcolo per raffrescamento

 $Q_{C,gn,in}$ Energia termica in ingresso al sottosistema di generazione per raffrescamento

Q_{C,aux} Fabbisogno elettrico totale per raffrescamento

Q_{C,p,nren} Fabbisogno di energia primaria non rinnovabile per raffrescamento

Q_{C,p,tot} Fabbisogno di energia primaria totale per raffrescamento

Pannelli solari fotovoltaici

Energia elettrica da produzione fotovoltaica [kWh]:

Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Sett	Ott	Nov	Dic
304	490	904	1028	1315	1566	1525	1294	937	477	301	246

Fabbisogno di energia primaria non rinnovabile	$Q_{C,p,nren}$	0	kWh/anno
Fabbisogno di energia primaria totale	$Q_{C,p,tot}$	3	kWh/anno
Rendimento globale medio stagionale (rispetto all'energia primaria non rinnovabile)	$\eta_{\text{C,g,p,nren}}$	974939,3	%
Rendimento globale medio stagionale (rispetto all'energia primaria totale)	$\eta_{\text{C,g,p,tot}}$	633,8	%
Consumo di energia elettrica effettivo		0	kWh/anno

FABBISOGNI E CONSUMI TOTALI

Edificio: Edificio polifunzionale DPR 412/93 E.4 (1) Superficie utile 306,04 m²

Fabbisogno di energia primaria e indici di prestazione

Servizio	Qp,nren [kWh]	Qp,ren [kWh]	Qp,tot [kWh]	EP,nren [kWh/m²]	EP,ren [kWh/m²]	EP,tot [kWh/m²]
Riscaldamento	31885	27611	59496	104,19	90,22	194,41
Acqua calda sanitaria	425	1556	1981	1,39	5,08	6,47
Raffrescamento	21	3435	3456	0,07	11,22	11,29
Ventilazione	138	138	<i>275</i>	0,45	0,45	0,90
Illuminazione	2489	2420	4908	8,13	7,91	16,04
TOTALE	34958	35159	70117	114,23	114,88	229,11

Vettori energetici ed emissioni di CO₂

Vettore energetico	Consumo	U.M.	CO ₂ [kg/anno	•]		Servizi	
Energia elettrica	17927	kWhel/anno	824	16	Riscaldamento, Acqua calda sanitaria, Raffrescamento, Ventilazione, Illuminazione		
Zona 1 : Sala polifunzionale		OPR 412/93	E.4 (1)	Su	uperficie utile	218,47	m ²

Fabbisogno di energia primaria e indici di prestazione

Servizio	Qp,nren [kWh]	Qp,ren [kWh]	Qp,tot [kWh]	EP,nren [kWh/m²]	EP,ren [kWh/m²]	EP,tot [kWh/m²]
Riscaldamento	14234	4419	18653	65,15	20,23	85,38
Raffrescamento	21	3431	3452	0,10	15,71	15,80
Ventilazione	138	138	275	0,63	0,63	1,26
Illuminazione	1484	1430	2914	6,79	6,55	13,34
TOTALE	15877	9418	25295	72,67	43,11	115,78

Vettori energetici ed emissioni di CO₂

Vettore energetico	Consumo	U.M.	CO ₂ [kg/anno]	Servizi		
Energia elettrica	8142	kWhel/anno	374	5	Riscaldamento, Acqua calda sanitaria, Raffrescamento, Ventilazione, Illuminazione		
Zona 2 : Bar / Cucina		PR 412/93 <i>E.4 (1)</i> Superficie utile		87,57	m ²		

Fabbisogno di energia primaria e indici di prestazione

Servizio	Qp,nren [kWh]	Qp,ren [kWh]	Qp,tot [kWh]	EP,nren [kWh/m²]	EP,ren [kWh/m²]	EP,tot [kWh/m²]
Riscaldamento	17651	23192	40843	201,56	264,84	466,40
Acqua calda sanitaria	425	1556	1981	4,86	17,77	22,63
Raffrescamento	0	3	3	0,00	0,04	0,04
Illuminazione	1005	990	1994	11,47	11,30	22,77
TOTALE	19081	25741	44822	217,89	293,95	511,84

Vettori energetici ed emissioni di CO₂

Vettore energetico	Consumo	U.M.	CO ₂ [kg/anno]	Servizi
Energia elettrica	9785	kWhel/anno	4501	Riscaldamento, Acqua calda sanitaria, Raffrescamento, Ventilazione, Illuminazione

PANNELLI SOLARI FOTOVOLTAICI

Edificio: Edificio polifunzionale

Energia elettrica da produzione fotovoltaica 10347 kWh/anno Fabbisogno elettrico totale dell'impianto 26390 kWh/anno

Percentuale di copertura del fabbisogno annuo 32,1 %

Energia elettrica da rete 17927 kWh/anno Energia elettrica prodotta e non consumata 1884 kWh/anno

Energia elettrica mensile dell'impianto fotovoltaico (Eel,pv,out)

Mese	E _{el,pv,out} [kWh]
Gennaio	304
Febbraio	490
Marzo	904
Aprile	1028
Maggio	1315
Giugno	1566
Luglio	1525
Agosto	1294
Settembre	937
Ottobre	477
Novembre	301
Dicembre	246
TOTALI	10387

Fabbisogni elettrici dell'impianto fotovoltaico

40 kWh/anno

Descrizione sottocampo: Pannelli fotovoltaici

Modulo utilizzato **Pannelli fotovoltaici**Numero di moduli **30**Potenza di picco totale **12000** Wp
Superficie utile totale **51,00** m²

Dati del singolo modulo

Potenza di picco W_{pv} 400 W_p Superficie utile A_{pv} 1,70 m^2 Fattore di efficienza f_{pv} 0,70 - Efficienza nominale 0,24 -

Dati posizionamento pannelli

Orientamento rispetto al sud y 90,0 °

Inclinazione rispetto al piano orizzontale

4,0 °

Coefficiente di riflettenza (albedo)

Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

Ombreggiamento (nessuno)

Energia elettrica mensile prodotta dal sottocampo

Mese	E _{pv} [kWh/m²]	E _{el,pv,out} [kWh]
gennaio	36,2	304
febbraio	58,3	490
marzo	107,6	904
aprile	122,4	1028
maggio	156,6	1315
giugno	186,4	1566
luglio	181,5	1525
agosto	154,0	1294
settembre	111,6	937
ottobre	56,8	477
novembre	35,8	301
dicembre	29,3	246
TOTALI	1236,6	10387

Legenda simboli

Irradiazione solare mensile incidente sull'impianto fotovoltaico E_{pv}

 $E_{\text{el,pv,out}}$ Energia elettrica mensile prodotta dal sottocampo

RETE DI DISTRIBUZIONE ANALITICA calcolo secondo UNI/TS 11300-2

Descrizione rete: ACS

Descrizione tubazione	D [mm]	L [m]	U [W/mK]	Tipologia
Tubi multistrato in PE- Xb/ALU/PE-ad	20	50,00	0,331	Tubazioni precalcolate, isolate secondo DPR 412/93

<u>Legenda</u>

D Diametro esterno della tubazione L Lunghezza della tubazione

U Trasmittanza lineica della tubazione

Dettagli tubazioni

Descrizione tubazione Tubi multistrato in PE-Xb/ALU/PE-ad

Trasmittanza lineica della tubazione 0,331 W/mK
Diametro esterno 20 mm
Lunghezza 50,00 m

<u>Tipologia</u> **Tubazioni precalcolate, isolate secondo DPR 412/93**

Isolamento

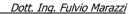
Isolante 1 Spessore **0** mm Conduttività **0,000** W/mK

Ambiente di installazione

Ambiente di installazione Interno

Coefficiente di recuperabilità delle perdite 1,00
Temperatura ambiente installazione 20,0 °C

Descrizione rete: Riscaldamento


Descrizione tubazione	D [mm]	L [m]	U [W/mK]	Tipologia
Tubi multistrato in PE- Xb/ALU/PE-ad	26	40,00	0,277	Tubazione corrente in aria

<u>Legenda</u>

D Diametro esterno della tubazione
 L Lunghezza della tubazione
 U Trasmittanza lineica della tubazione

Dettagli tubazioni

Descrizione tubazione Tubi multistrato in PE-Xb/ALU/PE-ad

Trasmittanza lineica della tubazione 0,277 W/mK
Diametro esterno 26 mm
Lunghezza 40,00 m

<u>Tipologia</u> **Tubazione corrente in aria**

Isolamento

Isolante 1 Spessore 6 mm Conduttività 0,040 W/mK

Ambiente di installazione

PERDITE RETI DI DISTRIBUZIONE

calcolo secondo UNI/TS 11300-2

Zona 1 : Sala polifunzionale

Servizio riscaldamento (impianto idronico)

Nota: nessuna rete di distribuzione associata per il servizio.

Zona 2 : Bar / Cucina

Servizio riscaldamento (impianto idronico)

Nota: nessuna rete di distribuzione associata per il servizio.

Servizio acqua calda sanitaria

Distribuzione utenza

Dettaglio perdite della rete: ACS

Mese	giorni	QI [kWh]	Qlrh [kWh]	Ql' [kWh]
gennaio	31	18	14	18
febbraio	28	16	13	16
marzo	31	18	14	18
aprile	30	17	14	17
maggio	31	18	14	18
giugno	30	17	14	17
luglio	31	18	14	18
agosto	31	18	14	18
settembre	30	17	14	17
ottobre	31	18	14	18
novembre	30	17	14	17
dicembre	31	18	14	18
TOTALI	365	210	168	210

Legenda simboli

Ql Perdite della rete di distribuzione del sottosistema

Qlrh Perdite recuperate della rete di distribuzione del sottosistema

Ql' Perdite della rete di distribuzione del sottosistema, al netto di tutti i recuperi (termici ed elettrici)

8. RETI DI DISTRIBUZIONE IMPIANTO DI CLIMATIZZAZIONE

8.1. DIMENSIONAMENTO RETI IMPIANTO DI CLIMATIZZAZIONE

Per il dimensionamento delle reti e per la determinazione dei diametri delle tubazioni, sono state utilizzati i metodi di calcolo indicati nella collana tecnica denominata "Quaderni Caleffi", facendo riferimento ai diagrammi e le tabelle pubblicate nei volumi della collana stessa.

8.2. DIMENSIONAMENTO TUBAZIONI IMPIANTO DI CLIMATIZZAZIONE

Le perdite di carico sono perdite di pressione causate dalle resistenze che si oppongono al moto di un fluido. Conoscere il loro valore serve essenzialmente a:

- dimensionare i condotti che convogliano i fluidi;
- determinare le caratteristiche delle pompe e dei ventilatori, cioè dei mezzi che servono a mantenere in movimento i fluidi.

Le perdite di carico possono essere continue o localizzate:

- quelle continue si manifestano lungo i tratti lineari dei condotti;
- quelle localizzate si manifestano, invece, in corrispondenza dei pezzi speciali che fanno variare la direzione o la sezione di passaggio del fluido (ad es. riduzioni, derivazioni, raccordi, confluenze, valvole, filtri, ecc.).

8.2.1 PERDITE DI CARICO CONTINUE

Per ogni metro di tubo, le perdite di carico continue possono essere calcolate con la formula:

$$r = Fa * \underline{1} * \rho * \underline{v}^2$$

$$L \qquad 2$$

dove:

r : perdita di carico continua unitaria, in Pa/m

Fa: fattore di attrito, adimensionale

 ρ : massa volumica dell'acqua, in Kg/m3

v : velocità media dell'acqua, in m/s D : diametro interno del tubo, in m

Noti il diametro del tubo, la velocità dell'acqua e la sua massa volumica, il solo parametro che risulta indeterminato è il fattore di attrito: fattore che dipende dal regime di moto del fluido, e dalla rugosità dei tubi.

REGIME DI MOTO DEL FLUIDO

Può essere:

- laminare, quando le particelle del fluido hanno traiettorie ordinate e fra loro parallele (il moto \grave{e}

calmo e regolare);

- turbolento, quando le particelle del fluido si muovono in modo irregolare e variabile nel tempo

(il moto è disordinato e instabile);

transitorio, quando il moto non è chiaramente né laminare, né turbolento.

Il regime di moto di un fluido è individuabile col numero di Reynolds:

$$Re = \frac{V \cdot D}{v}$$

Re: numero di Reynolds, adimensionale v: velocità media del fluido, in m/s D = diametro interno del tubo, in m

v = viscosità cinematica del fluido, in m2/s

RUGOSITA'

Per i tubi che convogliano acqua si possono considerare due classi di rugosità: la bassa e la media:

- la bassa rugosità comprende i tubi in rame, in acciaio inox e in materiale plastico;
- q la media rugosità comprende, invece, i tubi in acciaio nero e zincato.

DETERMINAZIONE DEL FATTORE DI ATTRITO [Fa]

In regime laminare [Fa] è determinabile con la seguente formula:

In regime turbolento è, invece, determinabile con la formula di Colebrook: formula che, però, richiede metodi di calcolo per approssimazioni successive assai complessi. Motivo per cui nella pratica si ricorre a formule più semplici.

Misure di laboratorio e verifiche in merito hanno indotto ad utilizzare la formula di Blasius, sotto riportata, per i tubi a bassa rugosità:

$$Fa = 0.316 \cdot Re^{-0.25}$$

e ad elaborare un'apposita relazione per i tubi a media rugosità:

$$Fa = 0.07 \cdot Re^{-0.13} \cdot D^{-0.14}$$

Ponendo nella:

$$r = Fa * \underline{1} * \rho * \underline{v^2}$$

$$L \qquad 2$$

i valori di [Fa] sopra riportati, è dunque possibile ottenere formule che consentono di calcolare le perdite di carico continue in base a parametri direttamente noti o determinabili.

Le formule sopra riportate possono essere utilizzate per approntare tabelle e diagrammi atti a rendere praticabile il dimensionamento manuale delle tubazioni.

8.2.2 TABELLE PERDITE DI CARICO CONTINUE

Le formule viste in precedenza sono state utilizzate approntare tabelle e diagrammi atti a rendere praticabile il dimensionamento manuale delle tubazioni.

Detti tabelle e diagrammi, riportati all'interno della collana tecnica denominata "Quaderni Caleffi", sono stati utilizzati per il dimensionamento delle tubazioni del presente progetto, in base alla tipologia di tubazioni scelte per la distribuzione ed alle portate dei circuiti di progetto.

Come accennato, le tabelle delle perdite di carico continue dell'acqua (r) danno il valore delle stesse in relazione al diametro dei tubi (D) e alle portate (G). All'interno delle tabelle sono inoltre indicate le velocità che servono sia a determinare le perdite di carico localizzate (come vedremo in seguito), sia a tener sotto controllo i limiti oltre i quali lo scorrere dell'acqua può diventare troppo rumoroso e provocare vibrazioni.

Le reti di distribuzione dei fluidi termovettori sono state dimensionate considerando come massima perdita di carico per metro lineare il valore di circa 35 mm. c. a./m.

Perdite di carico continue TUBI IN ACCIAIO (pollici) - Temperatura acqua = 10°C

r	= perdite	di carico c	ontinue, mn	n c.a./m			G = po	rtate, Vh				w = ve/o	cità, m/s		
r	ø	3/8"	1/2"	3/4"	1"	1.1/4"	1.1/2"	2"	21/2"	3"	4"	5"	6"	ø	r
2	G	0.10	88	188 0.14	347 0.16	727	1.090	2.054	4.090	6.272	12.695 0.41	22.267	35.979	G	2
4	G	64	127	273	503	1.053	1.579	2.975	5.926	9.086	18.392	32.258	52.123	G	4
6	G	0,14	0,17	339	625	1.308	1.962	3.696	7.360	0,49	0,59 22.845	40.069	64.744	G	6
	G	0,17	0,21	395	729	0,35 1,525	2,288	4.310	0,55 8,584	13.162	26,644	0,85 46.733	0,95 75.511	G	- 77
8	v G	105	208	0,29	0,34	1,719	0,46 2,578	0,54 4,857	9,672	0,71	0,85	0,99 52,656	1,11 85.081	V G	
0	M	0,23	0,27	0,33	0,39	0,47	0,52	0,61	0,72	0,81	0,96	1,11	1,25	W	1
2	G	115 0.25	229 0.30	490 0.37	905	1.895 0.51	2.842	5.354 0.67	10.663	16.349 0.89	33.096	58.048	93.794	G	1.
4	G	125	0.33	533	983	2.057 0.56	3.086	5.814 0.73	11.579 0.87	17.754	35,939	63.036	101.854	G	1.
6	G	135	267	572	1.056	2.210	3.315	6.244	12.436	19.068	38.600	67.702	109.393	G	1
8	G	0,29	0,35	609	1.124	2,60	3,530	0,78 6.650	0.93	20.308	41.109	72.103	116.504	G	1
	V G	0,91	0,37 301	0,45 645	1,189	2,490	3,735	7.036	0,99 14,012	21,485	1,32	76.282	1,72	G G	
10	D.	0,33	0,40	0,48	0,56	0,68	0,75	0,88	1.05	1.17	1,40	1,61	1,82	W.	2
2	G	159 0,35	316 0,42	678 0,50	1.251 0,59	2,620 0,71	3,930 0,79	7.404 0,93	14.745	22.609 1,23	45.766 1,47	80.271 1,69	129.702 1,91	G	2
14	G	167 0.37	331 0.44	711 0.53	1.311	2.745	0.83	7.756	15,447	23.685	47.946	84.094	135.880	G	2
26	G	0.38	346 0.45	742 0.55	1.368 0.64	2.865 0.78	4.297 0.86	8.096	16.123	24.721	50.042	87.772 1.85	141.822	G	2
8	G	181	360	772	1.424	2.980	4,471	8.423	16.775	25.721	52.065	91.320	147.555	G	2
	G	0,40 188	373	0,57 801	1.477	3.092	0,90 4.639	1,05 8.739	17.405	1,40 26.687	54.022	94.752	2,18 153.101	G	
10	G	204	0,49 406	0,60	1,604	3.358	5.038	9.490	1,30	7,45 28,980	1,73 58,664	2,00	2,26 166,256	G	3
15	G	0.45	0,53 436	0,65	0,76	0,91	7,07	1.19	20,300	1,57	1,88	2,17	2,45	G	3
10	V	0.48	0.57	934 0,69	1.723 0,81	3,607 0,98	5.411	10.193	1,52	31.125 1,69	63.006 2.02	110.510 2,33	2,63	v	4
15	G	234 0.51	464 0.61	994	1.835	3.841	5.762	10.855	21.619 1.62	33.149	67.102 2.15	117.695 2.48	190.171	G	4
0	G	247	491	1.052	1.941	4.064	6.096	11.485	22.873	35.070	70.992	124,516	201.193	G	5
20	G	273	541	1,160	2.140	4.480	6.721	12.661	25.215	38.662	78.262	137.268	221.798	G	6
0	G	0,60 296	0,71 588	1.260	2.324	1,22 4.865	7,298	1,58	7,88 27.382	2,10 41.984	2,51 84.987	149.063	3,27 240.856	G	7
	G	0,65 318	631	1,353	2,496	1,32 5.225	7.838	1,72	29,408	2,28 45,091	91,277	3,14	3,55 258,684	G	- 33
10	u G	339	0,83 672	1,01	2,658	1,42 5,565	1,57 8.348	1,85	2,20	2,45 48.023	2,93 97,211	3,38	3,81 275.501	V G	8
0	ÿ.	0.74	0.88	1,07	1,25	1,51	1,67	1.97	2.34	2,61	3,12	3,60	4,06	200	9
00	G	358 0.79	711	1.524	2.812	5.887	8.832	16.638 2.08	33.135	50.806	102.846	180.387	291,469 4,30	G	10

Se:	= superfici	Se = superficie esterna, m²/m			interna, mm	2 V	V = contenuto acqua, I/m			P = peso tubo nero, kg/m			P* = peso tubo zincato, kg/n			
- 11	ø	3/8"	1/2"	3/4"	费	1:1742	11/2"	2"	21/2"	3"	4"	5"	6"	Ø		
Øe	[mm]	16.7	21	26,4	33,2	41,9	47,8	59,6	75,2	87,9	113	138,5	163,9	Ge [mm]		
Oi .	[mm]	12,7	16,4	21,8	27,4	36,1	42	53,2	68,8	80,7	105	129,5	154,9	Oi [mm]		
Se	[m³/m]	0,052	0,066	0,083	0,104	0,132	0,150	0,187	0,236	0,276	0,355	0,435	0,515	Se [m³/m]		
Si	[mm²]	127	211	373	590	1.024	1.385	2.223	3.718	5.115	8.659	13,171	18.845	Si [mm ³]		
V	[l/m]	0,13	0,21	0,37	0,59	1,02	1,39	2,22	3,72	5,11	8,66	13,17	18,84	V [l/m]		
P	[kg/m]	0,72	1,06	1,37	2,17	2,79	3,21	4,45	5,68	7,48	10,75	14,86	17,68	P [kg/m]		
P*	[kg/m]	0,78	1,16	1,48	2,30	2,95	3,40	4,77	6,12	8,03	11,58	16,88	20,02	P* [kg/m]		

Perdite di carico continue TUBI IN ACCIAIO (pollici) - Temperatura acqua = 50°C

r	= perdite	di carico c	ontinue, mn	n c.a./m			G = por	rtate, Vh				w = ve/o	cità, m/s		
r	ø	3/8"	1/2"	3/4*	£"	1.1/4"	1 1/2"	2"	21/2"	3"	4"	5"	6"	Ø	r
2	G	0,10	94 0,12	201 0,15	371 0,17	777 0,21	1.166 0,23	2.196 0,27	4.374 0,33	6.707 0,36	13.577 0,44	23,813 0,50	38.478 0,57	G	2
4	G	0,15	136 0,18	292 0,22	0,25	1.126 0,31	1.689 0,34	3.182 0,40	6.337 0,47	9.717 0,53	19.669	34.499 0,73	55,743 0,82	G	4
6	G	0,19	0,22	362 0,27	668 0,31	1.399 0,38	2.098 0,42	3.952	7.871 0,50	12.069 0,66	24.431	42.852 0,90	69.240 1,02	G	6
8	G	0,22	197 0,26	0,31	779 0,37	1.631 0,44	2.447 0,49	4,610 0,58	9.181 0,69	14.076 0,76	28.495 0,91	49.978	80.755 1,19	G √	8
10	G	112 0,25	0,29	476 0,35	878 0,41	1.838	2.757 0,55	5.194 0,65	10.344 0,77	15.861 0,86	32.106 1,03	56.312 1,19	90.990 1,34	G	10
12	G	123 0,27	245 0,32	525 0,39	968 0,46	2.026	3.039 0,61	5.726 0,72	11.403 0,85	17.485 0.95	35.394	62.079	100,308 1,48	G	12
14	G	134 0,29	266 0,35	570 0,42	1.051 0,50	2.200 0,60	3.901 0,66	6.218 0,78	12,383 0,93	18.987 1,03	38.435 1,23	67.413 1,42	108.927 1,61	G	1
16	G	0,32	285 0,38	612 0,46	1.129 0,53	2,363 0,64	3.545	0,83	13,300	20.393	41.280 1,32	72.403 1,53	116.989 1,72	G	1
18	G	0,34	304 0,40	0,48	1.202 0,57	2,517 0,68	3.775 0,76	7.112	14.165	21.718	43,964	77.110 1,63	124.595 1,84	G	1
20	G	162 0,36	322 0,42	0,51	0,60	2.663 0,72	3.994 0,80	7.524 0,94	14.985 1,12	22.977 1,25	46.512 1,49	81.580 1,72	131.817 1,94	G	2
22	G	171 0,37	338 0,44	725 0.54	1.338 0,63	2.802 0,76	4.203 0,84	7.918	15.769 1,18	24.179 1,31	48.944 1,57	85.845 1,81	138.709 2,04	G	2
24	G	179 0,39	354 0,47	7 60 0,57	1.402 0,66	2.935	4.403 0,88	8.295 1,04	16.520 1,23	25.330 1,38	51.275 1,64	89.934 1,90	145.316 2,14	G	2
26	G	187 0,41	370 0,49	793 0,59	1.463 0,69	3.064 0,83	4.596 0.92	8.658 1,08	17.243 1,29	26.438 1,44	53.518 1,72	93.867 1,98	151.671 2,24	G	2
28	G	194 0,43	385 0,51	825 0,61	1.523 0,72	3.187 0.87	4.782 0,96	9.008	17.940 1,34	27.507 1,49	55.681 1,79	97.662 2,06	157.802 2,33	G	2
30	G	201 0,44	399 0,53	856 0,64	1.580 0,74	3,307 0,90	4.967 0,99	9.346	18,614 1,39	28.541 1,55	57.774 1,85	101.332 2.14	163,733 2,41	G	3
35	G	219 0,48	434 0,57	930	1.716	3,591 0,97	5.388 1,08	10.149	20.213	30.993 1,68	62.738	110.040	177,802 2,62	G	38
40	G	235 0,51	466 0,61	999 0,74	1.843 0,87	3.857 1,05	5.786 1.16	10.901 1,36	21.709 1,62	33.287 1,81	67.382 2,16	118.184 2.49	190.963 2,81	G	4
4 5	G	250 0,55	496 0,65	1,064 0,79	1.962 0,92	4.108	6.163 1,24	11.609 1,45	23.121 1,73	35.451 1,93	71.762 2,30	125.868 2,65	203.378 3,00	G	4
50	G	265 0,58	525 0,69	1.125 0,84	2.076 0,98	4.346 1,18	6.520	12.282	24.461 1,83	37.506 2,04	75.922 2,44	133.163 2,81	215.165 3,17	G	5
50	G	292 0,64	579 0,76	0,92	2.289 1.08	4.791 1,50	7.187 1,44	13.540 1,69	26.966 2,01	41.347 2,25	83.697 2,68	146.800 3,10	237.200 3,50	G	6
70	G	317 0,69	628 0,83	1.347 1,00	2,485	5.203 1,41	7,805 1,56	14.703 1,84	29.283 2.19	44.899 2,44	90.889 2,92	159.414 3,36	257.582 3,80	G	7
90	G	340 0,75	675 0,89	1,447	2.669 1,26	5.588 1,52	8.383 1,68	15.792 1,97	31.451 2,35	48.223 2,62	97.616 3,13	171,214 9,61	276.648 4,08	G	8
90	G	362 0,79	719 0,95	1.541	2.843 1.34	5.951 1,62	8.928 1.79	16.818	33.495 2.50	51.358 2.79	103.962 3.34	182,345 3,85	294.633 4,34	G	9
100	G	383	760	1.630	3.008	6.296	9.445	17.793	35.437 2.65	54.335 2.95	109,988	192.913	311.710	G	10

Se	= superfici	ie esterna, m	³/m	Si = sezione interna, mm²			V = contenuto acqua, I/m			P = peso tubo nero, kg/m			P* = paso tubo zincato, kg/m			
- 1	Ø	3/8"	1/2"	3/4"	f*	1 1/4"	1 1/2"	2"	2 1/2"	3"	4"	5"	6"	Ø		
Øe	[mm]	16.7	21	26,4	39,2	41,9	47,8	59,6	75,2	87,9	113	138,5	163,9	Øe [mm]		
Øi	[mm]	12,7	16,4	21,8	27,4	36,1	42	59,2	68,8	80,7	105	129,5	154,9	Øi [mm]		
Se	[m³/m]	0,052	0,066	0,083	0,104	0,132	0,150	0,187	0,236	0,276	0,355	0,435	0,515	Se [m³/m]		
Si	[mm²]	127	211	373	590	1.024	1.385	2.223	3.718	5.115	8.659	13,171	18.845	Si [mm ³]		
V	[l/m]	0,13	0,21	0,37	0,59	1,02	1,39	2,22	3,72	5,11	8,66	13,17	18,84	V [l/m]		
P	[kg/m]	0,72	1,06	1,37	2,17	2,79	3,21	4,45	5,68	7,48	10,75	14,86	17,68	P [kg/m]		
p*	[kg/m]	0,78	1,16	1,48	2,30	2,95	3,40	4,77	6,12	8,03	11,58	16,88	20,02	P* [kg/m]		

Perdite di carico continue TUBI MULTISTRATO - Temperatura acqua = 50°C

r:	- peraite	di carico con	tinue, mm c.	.a./m		G	= portate, V	n			V = V610	cità, m/s		
	Øe	14	16	20	.26	32	40	50	63	75	90	110	Øe	
r	Øi	10	11,5	15	20	26	33	42	51	60	73	90	Øi	r
2	G	0.09	0.10	0.12	166 0.15	0.18	0.21	1.244 0.25	2.108	3.277 0.32	5.580	9.849	G	2
4	G	38	55	113 0.18	247	503	961	1.849	3.132	4.869	8.291	14.636	G	4
6	G	0,13	0,15	143	311	634	1,212	2.331	3.949	6.139	10.453	18.452	G	6
	G	0,17	0,19	0,22	0,28 367	748	1,428	0,47 2,748	4.655	7,235	12.321	21,748	G	-
8	V	63	0,22	0,26	0,32	0,39	0,46	0,55	5.288	0,71 8,219	13.997	0,95 24.706	v	8
10	G	0,22	0,25	0,30	0,37	0,44	0,53	0,63	0,72	0,81	0,93	1,08	G	10
12	G	0,25	0,28	0,33	462 0,41	0,49	1.800	3.465 0,69	5.868 0.80	0,90	15.534	27,419 1,20	G	12
4	G	0.27	112 0.30	231 0.36	505 0.45	1.029 0.54	1.966	3.784 0,76	6.409 0.87	9.962	16.964	29.944	G	14
16	G	83	121	250	545	1.111	2.122	4.084	6.917	10.752	18.309	32.318	G	10
18	G	0,29	130	267	583	1.188	2.270	4.368	7.398	11.500	19.584	34.568	G	
	G	0,31	0,35	284	619	1,262	2,411	4,639	7.857	1,13	20.799	36.713	V.	1
10	V	0,33	0,37	0,45	0,55	0,66	0,78	0,93	1,07	1,20	1,38	1,60	v	2
22	G	0,36	0,39	299 0,47	654 0,58	1.333 0,70	2.546 0,83	4.899 0,98	8.297 1,13	12.898	21.963 1.46	38.768	G	2
24	G	0.37	153 0,41	0.49	687 0,61	1.401 0.73	2,675 0,87	5.148	8.720 1.19	13.555	23.083	40,744	G	2
26	G	0.39	160 0.43	329 0.52	719 0.64	1.466	2.801	5.389	9.128	14.190	24.163	42.651	G	2
28	G	114	167	344	750	1.530	2,922	5.622	9.523	14.803	25.208	44.496	G	2
	G	0,40	174	0,54 358	0,66 781	1.591	3.039	1,13 5.848	9.906	15.399	26.222	46.286	G	20
10	G	130	190	0,56 390	0,69 853	1.738	3,319	6.387	10.818	1,51	28.636	50.548	G	3
16		0,46	0,51	0,61	0,75	0,91	1,08	1,28	1,47	1,65	1,90	2,21	V	3
10	G	0,50	205 0,55	421 0,66	920 0,81	1.875 0,98	3.582 1,16	6.893 1,38	11.676 1.50	18.150 1,78	30.907 2,05	54.556 2,38	G	4
15	G	150 0.53	219 0.59	451 0.71	984 0.87	2.006	3.832	7.373	12.489	19.414	33,059	58,354	G	4
50	G	159 0.56	233 0,62	479 0.75	1.045	2.131	4.069	7.831	13.264	20.618	35.110	61.975	G	51
50	G	177	258	531	1.160	2,364	4.516	8.691	14.721	22.882	38.966	68.780	G	6
20.00	G	193	282	0,84 580	1,03	2.582	4.932	9.491	16.076	24.989	2,59 42.554	75,114	G	
70	V G	0,68	304	0,91 626	1,12	1,35 2,787	1,60 5,323	1,90	2,19 17,351	26.971	2,82 45,928	3,28 81.069	V G	70
30	V	0:74	0.81	0,98	1,21	1,46	1,73	2,05	2,36	2,65	3,05	3,54	v	8
10	G	223 0,79	326 0,87	670 1,05	1,462	2.981 1,56	5.694 1,85	10.957 2,20	18.559 2,52	28.849 2,83	49.125 3,26	86,713 3,79	G	9
00	G	237 0,84	346 0,92	711 1,12	1.553 1,37	3.166	6.047 1,96	11.637 2,33	19.710 2.68	30.639 3,01	52.174 3,46	92.094 4,02	G	10
ie = s	uperficie	esterna, m³/n	n			Si =	sezione inte	ma, mm²			V	= contenut	acqu	a, Vm
le Im	ml T	14	16	20	26	32	40	50	63	75	90	110	Oe	[mm]
	mil	10	11,5	15	20	26	33	42	51	60	73	90	Oi	lmm
e Im	e/m)	0.044	0.050	0.063	0.082	0.101	0.126	0,157	0.198	0.236	0.283	0.346	Se	
-	m ^a J	79	104	177	314	531	855	1.385	2.043	2.827	4.185	6.362	Si	[mm
1 11/1	COT	0.08	0,10	0,18	0,31	0.53	0.86	1,39	2.04	2.83	4.19	6,36	V	[I/m]

8.2.3 PERDITE DI CARICO LOCALIZZATE

Le perdite di carico localizzate sono dovute alla presenza di pezzi speciali che fanno variare la direzione o la sezione di passaggio del fluido. Possono essere calcolate con uno dei seguenti metodi:

- metodo diretto, utilizza coefficienti che dipendono dalla forma e dalle dimensioni dei pezzi speciali;
- metodo delle portate nominali, ricorre, per ogni pezzo speciale, al valore della sua portata nominale: cioè alla portata che corrisponde ad una perdita di pressione unitaria predefinita (ad esempio 1 bar);
- metodo delle lunghezze equivalenti, sostituisce, ad ogni pezzo speciale, un tratto di tubo lineare in grado di dare le stesse perdite di carico.

In genere, per il dimensionamento dei tubi e delle pompe si ricorre al metodo diretto, in quanto è sufficientemente accurato ed è facile da utilizzare.

Con tale metodo le perdite di carico localizzate si possono calcolare con la formula:

$$r = \xi \bullet \rho \bullet \underline{v^2}$$

dove:

z = perdita di carico localizzata, in Pa

 ξ - = coefficiente di perdita localizzata, adimensionale (determinato con prove di laboratorio)

 ρ = massa volumica dell'acqua, in kg/m3

v = velocità media dell'acqua, in m/s

Esprimendo le perdite di carico localizzate in unità di misura pratiche (cioè in mm c.a.) la precedente diventa:

$$z = \xi \bullet \rho \bullet \underline{v^2}$$

$$2 \bullet 9.81$$

8.2.4 TABELLE PERDITE DI CARICO LOCALIZZATE

Per determinare il valore delle perdite di carico localizzate, sono stati utilizzati i seguenti tipi di tabelle, riportati all'interno della collana tecnica denominata "Quaderni Caleffi".

TABELLE COEFFICIENTI PERDITE DI CARICO LOCALIZZATE [$\xi \cdot$]

Riportano i valori dei coefficienti $[\xi]$ relativi ai raccordi e componenti più utilizzati negli impianti idrotermosanitari.

Valori del coefficiente $[\xi]$ di perdita localizzata - reti di distribuzione

Diametro interno tubi in accisio incx, ra	ime e materiale plastico	9 + 76 mm	T8 + 29 7000	30+54 mm	>54 mm
	Diametro tubi in acciaio	3/8" + 1/2"	3/4"+7"	1 1/4"+2"	> 2*
Tipo di resistenza localizzata	Simbolo				
Curva stretta a 90° rAd = 1,5	r	2.0	1.5	1,0	0,8
Curva normale a 90° rid = 2,5		1,5	T, O	0,5	0,4
Curva larga a 90° r/d > 3,5		1,0	0,5	0,3	0,3
Curva stretta a U r/d = 1,5	n	2,5	2.0	1,5	1,0
Crava normale a U r/d = 2,5	\cap	2.0	1,5	8,0	6.5
Curve larga a U r/d > 3,5	\cap	1,5	0.8	0,4	0,4
Allargamento			1	,o	10.
Restringimento			0	5	
Diramazione semplice con T a squadra			,	,0	
Confluenza semptice con 7 a squadra			19	O	
Diramazione doppia con T a squadra			3	P	
Confluenza doppila con T a squadra			3	<i>(</i>)	
Diramazione semplice con angolo inclinato (45° - 60°)			.0	M.	
Conflueriza sempiloe con angolo inclinato (45° - 60°)			0	,5	
Diremezione con curve d'Invito			2	1,0	
Confluenza con curve d'invite			2	φ.	

Valori del coefficiente [ξ] di perdita localizzata – componenti di impianto

Diametro interno tubi in accisio in	rox, rame e materiale plastico	8+75 mm	18+28 mm	30 + 54 mm	> 54 mm
Die	ametro esterno tubi in accialo	3/8"+1/2"	3/4"+1"	1 1/4"+2"	> 2"
Tipo di resistenza localizzata	Sémbolo				
falvola di Intercettazione diritta	X ;	10,0	8,0	7,0	6,0
Valvola di Intercettazione Inclinata	-1×1-	40	4,0	3,0	3,0
Saracinesca a passaggio ridetto	-\ <u>ā</u> ;-	1,2	1,0	ci,s	0,6
Saracinesca a passaggio totale	一流一	0,2	0.2	0,1	0,1
raivola a sfera a passaggio ridotto		1.6	1.0	0.8	0,6
fairola a stera a passaggio fotale	-jxi-	0,2	0,2	0,1	0,1
falvola a fortalia	-/*-	3.5	2.0	1,5	1,0
falvola a ritegno	-1₹-	3.0	2,0	1,0	1,0
/alvola per corpo scaldante tipo diritto	-δ-	8,5	7.0	6,0	323
falvola per corpo scaldante fipo a squadra	<i>−</i> δ	4.0	-60	3,0	(-
Outastore diritto	-5-	r, s	f.5	1,0	1000
Descritore a squadra	− ō	1,0	1,0	0,5	1 = 1
raivola a quatitro vie	-&-	ß	,o	4	o
fairofa a tre vie	- - - - - - - - - - - - - -	ro	20	a	o
Passaggio attraverso radiatore			3	0.0	
Passaggio affraverso calidala a terra			3	,0	

TABELLE PERDITE DI CARICO LOCALIZZATE [z]

Sono tabelle che consentono di determinare le perdite di carico localizzate [z] noti i coefficienti [ξ] e le velocità dell'acqua [v] .

Per alcuni componenti (quali ad esempio: gli scambiatori, i collettori, le valvole di zona) sono state tuttavia derivate le perdite localizzate direttamente dalle specifiche tecniche dei Costruttori.

Perdite di carico localizzate per $\Sigma \xi = 1 \div 15$ (temperatura acqua = 10°C)

		v = vek	ocità, m/s		$\Sigma \xi = sor$	nmatoria	coefficien	ti perdite	di carico	localizzate	, admen	sionale	z=	perdite d	li carico lo	calizzate	mm c	a
v	Σξ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Σξ	V
0,10	z	0,5	1,0	1,5	2,0	2,5	3,1	3,6	4,1	4,6	5,1	5,6	6,1	6,6	7,1	7,6	z	0,10
0,12	z	0,7	1,5	2,2	2,9	3,7	4.4	5,1	5,9	6,6	7,3	8,1	8,8	9,5	10	11	z	0,12
0,14	z	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	9,0	10	11	12	13	14	15	Z	0,14
0,16	Z	1,3	2,6	3,9	5,2	6,5	7,8	9,1	10	12	13	14	16	17	18	20	z	0,16
0,18	z	1,7	3,3	5,0	6,6	8,3	9,9	12	13	15	17	18	20	21	23	25	z	0,18
0,20	Z	2,0	4,1	6,1	8,2	10	12	14	16	18	20	22	24	26	29	.31	z	0,20
0,22	z	2,5	4,9	7,4	9,9	12	15	17	20	22	25	27	30	32	35	37	z	0,22
0,24	z	2,9	5,9	8,8	12	15	18	21	23	26	29	32	35	38	41	44	Z	0,24
0,26	z	3,4	6,9	10	14	17	21	24	28	31	34	38	41	45	48	52	z	0,26
0,28	z	4,0	8,0	12	16	20	24	28	32	36	40	44	48	52	56	60	z	0,28
0,30	z	4,6	9,2	14	18	29	28	32	37	41	46	50	55	60	64	69	z	0,30
0,32	z	5,2	10	16	21	26	31	37	42	47	52	57	63	68	73	78	z	0,32
0,34	Z	5,9	12	18	24	29	35	41	47	53	59	65	71	77	82	. 88	z	0,34
0,36	z	6,6	13	20	26	33	40	46	53	59	66	73	79	86	92	99	z	0,36
0,38	z	7,4	15	22	29	37	44	52	59	66	74	81	88	96	103	110	z	0,38
0,40	z	8,2	16	24	33	41	49	57	65	73	82	90	98	106	114	122	Z	0,40
0,42	Z	9,0	18	27	36	45	54	63	72	81	90	99	108	117	126	135	z	0,42
0,44	z	9.9	20	30	39	49	59	69	79	89	99	109	118	128	138	148	z	0,44
0,46	z	11	22	32	43	54	65	75	86	97	108	119	129	140	151	162	z	0,46
0.48	z	12	23	35	47	59	70	82	94	106	117	129	141	153	164	176	z	0,48
0,50	Z	13	25	38	51	64	76	89	102	115	127	140	153	166	178	191	z	0,50
0.52	z	14	28	41	55	69	83	96	110	124	138	152	165	179	193	207	z	0,52
0,54	z	15	30	45	59	74	89	104	119	134	149	163	178	193	208	223	z	0.54
0,56	z	16	32	48	64	80	96	112	128	144	160	176	192	208	224	240	z	0,56
0,58	z	17	34	51	69	86	103	120	137	154	171	189	206	223	240	257	Z	0,58
0,60	z	18	37	55	73	92	110	128	147	165	183	202	220	238	257	275	z	0,60
0,62	z	20	39	59	78	98	118	137	157	176	196	215	235	255	274	294	z	0,62
0,64	z	21	42	63	83	104	125	146	167	188	209	230	250	271	292	313	z	0,64
0,66	z	22	44	67	89	111	133	155	178	200	222	244	266	289	311	333	z	0,66
0,68	Z	24	47	71	94	118	141	165	188	212	236	259	283	306	330	353	z	0,68
0,70	z	25	50	75	100	125	150	175	200	225	250	275	300	325	350	375	Z	0,70
0,72	z	26	53	79	106	132	158	185	211	238	264	291	317	343	370	396	Z	0,72
0,74	z	28	56	84	112	140	167	195	223	251	279	307	335	363	391	419	z	0,74
0,76	Z	29	59	88	118	147	177	206	235	265	294	324	353	383	412	441	z	0,76
0.78	z	31	62	93	124	155	186	217	248	279	310	341	372	403	434	465	z	0.78
0,80	z	33	65	98	130	163	196	228	261	293	326	359	391	424	457	489	z	0,80
0,82	z	34	69	103	137	171	206	240	274	308	343	377	411	445	480	514	z	0,82
0,84	Z	36	72	108	144	180	216	252	288	324	360	395	431	467	503	539	2	0,84
0,86	Z	38	75	113	151	188	226	264	301	339	377	415	451	490	528	565	z	0,86
0,88	z	39	79	118	158	197	237	276	316	355	395	434	473	513	552	592	z	0,88
0,90		41	83	124	165	206	248	289	330	371	413	454	495	537	578	619	-	-
10000	Z	41	86	129			-				413	474					Z	0,90
0,92	Z	-		10000	173	216	259	302	345	388	77.11	-	518	561	604	647	Z	0,92
0,94	Z	45	90	135	180	225	270	315	360	405	450	495	540	585	630	675	Z	0,94
0,96	Z	47	94	141	188	235	282	329	376	423	470	517	564	610	657	704	Z	0,96
0,98	Z	49	98	147	196	245	294	343	391	440	489	538	587	636	685	734	Z	0,98
1,00	Z	51	102	153	204	255	306	357	40B	459	510	560	611	662	713	764	Z	1,00

Perdite di carico localizzate per $\Sigma \xi = 1 \div 15$ (temperatura acqua = 10°C)

		V = Ve	locità, m/s	8	$\Sigma \xi = so$	mmatoria	coefficier	nti perdite	di carico	localizzati	e, adimer	sionale	z:	perdite o	di carico li	ocalizzate	, mm c	.a.
v	Σξ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Σξ	v
1,00	z	51	102	153	204	255	306	357	408	459	510	560	611	662	713	764	z	1,00
1,05	z	56	112	169	225	281	337	393	449	506	562	618	674	730	786	843	z	1,05
1,10	Z	62	123	185	247	308	370	432	493	555	617	678	740	801	863	925	z	1,10
1,15	Z	67	135	202	270	337	404	472	539	606	674	741	809	876	943	1.011	Z	1,15
1,20	z	73	147	220	293	367	440	514	587	660	734	807	880	954	1.027	1.101	z	1,20
1,25	z	80	159	239	318	398	478	557	637	717	796	876	955	1.035	1.115	1.194	z	1,25
1,30	z	86	172	258	344	431	517	603	689	775	861	947	1.033	1.119	1.206	1.292	z	1,30
1,35	z	93	186	279	371	464	557	650	743	836	929	1.021	1.114	1.207	1.300	1.393	Z	1,38
1,40	Z	100	200	300	399	499	599	699	799	899	999	1.099	1.198	1.298	1.398	1.498	z	1,40
1,45	z	107	214	321	429	536	643	750	857	964	1.071	1.178	1.286	1.393	1.500	1.607	z	1,45
1,50	z	115	229	344	459	573	688	803	917	1.032	1.146	1.261	1.376	1,490	1.605	1.720	z	1,50
1,55	Z	122	245	367	490	612	734	857	979	1,102	1.224	1.347	1.469	1.591	1.714	1.836	z	1,55
1,60	Z	130	261	391	522	652	783	913	1.044	1.174	1.304	1.435	1,565	1.696	1.826	1.957	Z	1,60
1,65	z	139	277	416	555	694	832	971	1.110	1.248	1.387	1.526	1.665	1.803	1.942	2.081	z	1,65
1,70	z	147	295	442	589	736	884	1.031	1.178	1.325	1.473	1.620	1.767	1.914	2.062	2.209	z	1,70
1,75	Z	166	312	468	624	780	936	1.092	1,248	1.404	1.560	1.716	1.873	2.029	2.185	2.341	Z	1,76
1,80	Z	165	330	495	660	825	991	1.156	1.321	1.486	1.651	1.816	1.981	2.146	2.311	2.476	z	1,80
1,85	z	174	349	529	698	872	1.046	1.221	1.395	1.569	1.744	1.918	2.093	2.267	2.441	2.616	z	1,88
1,90	Z	184	368	552	736	920	1.104	1.288	1.472	1.655	1.839	2.023	2.207	2.391	2.575	2.759	z	1,90
1,95	z	194	387	581	775	969	1.162	1.356	1.550	1.744	1,937	2.131	2.325	2.519	2.712	2.906	z	1,96
2,00	Z	204	408	611	815	1.019	1.223	1.427	1.630	1.834	2.038	2.242	2.446	2.650	2.853	3.057	Z	2,00
2,05	z	214	428	642	857	1.071	1.285	1.499	1.713	1.927	2.141	2.355	2,570	2.784	2.998	3.212	z	2,05
2,10	z	225	449	674	899	1.124	1.348	1.573	1.798	2.022	2.247	2.472	2.696	2.921	3.146	3.371	z	2,10
2,15	z	236	471	707	942	1.178	1.413	1.649	1.884	2.120	2.355	2.591	2.826	3.062	3.297	3.533	z	2,15
2,20	z	247	493	740	986	1,233	1,480	1.726	1,973	2.220	2.466	2.713	2.959	3.206	3.453	3.699	z	2,20
2,25	Z	258	516	774	1.032	1.290	1.548	1.806	2.064	2.322	2.580	2.837	3.095	3.353	3.611	3.869	z	2,28
2,30	z	270	539	809	1.078	1.348	1.617	1.887	2.156	2.426	2.695	2.965	3.235	3.504	3.774	4.043	z	2,30
2,35	z	281	563	844	1.126	1.407	1,688	1.970	2.251	2.532	2.814	3.095	3.377	3.658	3.939	4.221	z	2,35
2,40	z	293	587	890	1.174	1.467	1.761	2.054	2.348	2.641	2.935	3.228	3.522	3.815	4.109	4.402	z	2,40
2,45	z	306	612	918	1.223	1.529	1.835	2.141	2.447	2.753	3.058	3.364	3.670	3.976	4.282	4.588	Z	2,45
2,50	z	318	637	955	1.274	1.592	1.911	2.229	2.548	2,866	3.185	3.503	3.821	4.140	4.458	4.777	z	2,50
2,60	Z	344	689	1.033	1.378	1.722	2,067	2.411	2.756	3.100	3.444	3.789	4.133	4.478	4.822	5.167	z	2,60
2,70	z	371	743	1.114	1.486	1.857	2.229	2.600	2.972	3.343	3.714	4.086	4.457	4.829	5.200	5.572	z	2,70
2,80	z	399	799	1,198	1.598	1.997	2.397	2.796	3.196	3.595	3.995	4,394	4.794	5,193	5.593	5.992	z	2,80
2,90	I	429	857	1.286	1.714	2143	2.571	3.000	3.428	3.857	4.285	4.714	5.142	5.571	5.999	6,428	z	2,90
3,00	z	459	917	1.376	1.834	2.293	2.751	3.210	3.669	4.127	4.586	5.044	5.503	5.962	6.420	6.879	z	3,00
3,10	z	490	979	1.469	1.959	2.448	2.938	3.428	3.917	4.407	4.897	5.386	5.876	6.366	6.855	7.345	z	3,10
3,20	Z	522	1.044	1.565	2.087	2.609	3.131	3.652	4.174	4.696	5.218	5.739	6.261	6.783	7.305	7.826	z	3,20
3,30	Z	555	1,110	1.665	2.220	2.774	3.329	3.884	4.439	4.994	5.549	6.104	6.659	7.213	7.768	8.323	z	3,30
3,40	z	589	1.178	1.767	2.356	2.945	3.534	4.123	4.712	5.301	5.890	6.479	7.068	7.657	8.246	8.835	z	3,40
3,50	z	624	1.248	1.873	2.497	3.121	3.745	4.369	4.993	5.618	6.242	6,866	7.490	8.114	8.738	9.363	z	3,50
3,60	z	660	1,321	1.981	2.641	3.302	3.962	4.622	5.283	5.943	6,604	7.264	7.924	8.585	9.245	9,905	z	3,60
3,70	z	698	1,395	2.093	2.790	3.488	4.185	4.883	5.580	6.278	6.975	7.673	8.371	9.068	9.766	10.463	z	3,70
3,80	z	736	1.472	2.207	2.943	3.679	4.415	5.150	5.886	6,622	7.358	8.093	8.829	9.565	10.301	11.036	z	3,80
3,90	z	775	1.550	2.325	3.100	3.875	4.650	5.425	6.200	6.975	7.750	8.525	9.300	10.075	10.850	11.625	z	3,90
4,00	z	815	1.630	2.446	3.261	4.076	4.891	5.707	6.522	7.337	8.152	8.968	9.783	10.598	11.413	12.229	z	4,00

Perdite di carico localizzate per $\Sigma \xi$ = 1÷15 (temperatura acqua = 80°C)

		v = vek	ocità, m/s		$\Sigma \xi = sor$	mmatoria	coefficier	ti perdite	di carico	localizzate	, admen	sionale	z = perdite di carico localizzate, mm c.a.						
v	Σξ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Σξ	v	
0,10	z	0,5	1,0	1,5	2,0	2,5	3.0	3,5	4,0	4,5	5,0	5,4	5.9	6.4	6,9	7,4	z	0,10	
0,12	z	0,7	1,4	2,1	2,9	3,6	4,3	5,0	5,7	6,4	7.1	7,8	8,6	9,3	10	11	z	0,12	
0,14	z	1,0	1,9	2,9	3,9	4,2	5,8	6,8	7,8	8,7	9,7	11	12	13	14	15	Z	0,14	
0,16	Z	1,3	25	3,8	5,1	6,3	7,6	8,9	10	11	13	14	15	16	18	19	z	0,16	
0,18	z	1,6	3,2	4,8	6,4	8,0	9,6	11	13	14	16	18	19	21	22	24	z	0,18	
0,20	Z	2,0	4,0	5,9	7,9	9,9	12	14	16	18	20	22	24	.26	28	30	z	0,20	
0,22	z	2,4	4,8	7,2	9,6	12	14	17	19	22	24	26	29	31	34	36	z	0,22	
0,24	z.	2,9	5,7	8,6	11	14	17	20	23	26	29	31	34	37	40	43	Z	0,24	
0,26	Z	9,3	6,7	10	13	17	20	23	27	30	33	37	40	44	47	50	z	0,26	
0,28	Z	3,9	7,8	12	16	19	29	27	31	35	39	43	47	50	54	58	Z	0,28	
0,30	Z	4,5	8,9	19	18	22	27	31	36	40	45	49	53	58	62	67	z	0,30	
0,32	Z	5,1	10	15	20	25	30	35	41	46	51	56	61	66	71	76	Z	0,32	
0,34	Z	5,7	11	17	23	29	34	40	46	52	57	63	69	74	80	. 86	z	0,34	
0,36	z	6,4	13	19	26	32	39	45	51	58	64	71	77	83	90	96	z	0,36	
0,38	z	7,2	14	21	29	36	43	50	57	64	. 72	79	86	93	100	107	Z	0,38	
0,40	Z	7,9	16	24	32	40	48	55	63	71	79	87	95	103	111	119	2	0,40	
0,42	Z	8,7	17	26	35	44	52	61	70	79	87	96	105	114	122	191	Z	0,42	
0,44	Z	9,6	19	29	38	48	58	67	77	86	96	105	115	125	134	144	z	0,44	
0,46	Z	10	21	31	42	52	63	73	84	94	105	115	126	136	147	157	Z	0,46	
0,48	Z	11	23	34	46	57	68	80	91	103	114	126	737	148	160	171	Z	0,4	
0,50	Z	12	25	37	50	62	. 74	87	99	111	124	136	149	161	173	186	Z	0,50	
0,52	Z	13	27	40	54	67	80	94	107	121	134	147	161	174	187	201	Z	0,52	
0,54	Z	14	29	49	58	72	87	101	116	130	144	159	173	188	202	217	Z	0,54	
0,56	z	16	31	47	62	78	93	109	124	140	155	171	186	202	217	233	Z	0,5	
0,58	Z	17	33	50	67	83	100	117	133	150	167	183	200	217	233	250	Z	0,50	
0,60	Z	18	36	59	71	89	107	125	143	160	178	196	214	232	250	267	Z	0,60	
0,62	z	19	38	57	76	95	114	133	152	171	190	209	228	247	267	286	Z	0,6	
0,64	z	20	41	61	81	101	122	142	162	183	203	223	243	264	284	304	Z	0,6	
0,66	Z	22	43	65	86	108	129	151	173	194	216	237	259	280	302	324	Z	0,68	
0,68	Z	23	46	69	92	115	137	160	183	206	229	252	275	298	327	344	Z	0,68	
0,70	Z	24	49	73	97	121	146	170	194	218	243	267	291	315	340	364	Z	0,70	
0,72	Z	26	51	77	109	128	154	180	205	231	257	282	308	334	359	385	Z	0,72	
0,74	Z	27	54	81	108	136	163	190	217	244	271	298	325	353	380	407	z	0,74	
0,76	Z	29	57	86	114	143	172	200	229	257	286	315	343	372	400	429	Z	0,76	
0,78	Z	30	60	90	121	151	181	211	241	271	301	331	362	392	422	452	z	0,78	
0,80	z	32	63	95	127	158	190	222	254	285	317	349	380	412	444	475	Z	0,80	
0,82	z	33	67	100	133	167	200	233	266	300	333	366	400	433	466	500	z	0,82	
0,84	Z	35	70	105	140	175	210	245	280	315	349	384	419	454	489	524	2	0,84	
0,86	Z	37	73	110	147	183	220	256	293	330	366	403	440	476	513	549	Z	0,8	
0,88	Z	38	77	115	153	192	230	268	307	345	384	422	460	499	537	575	Z	0,8	
0,90	Z	40	80	120	160	201	241	281	321	361	401	441	481	521	562	602	Z	0,9	
0,92	Z	42	84	126	168	210	252	293	335	377	419	461	503	545	587	629	Z	0,90	
0,94	Z	44	88	131	175	219	263	306	350	394	438	481	525	569	673	656	Z	0,9	
0,96	Z	46	91	137	183	228	274	319	365	411	456	502	548	593	639	685	Z	0,96	
0,98	Z	48	95	143	190	238	285	333	381	428	476	523	571	618	666	713	Z	0,98	
1,00	Z	50	99	149	198	248	297	347	396	446	495	545	594	644	693	743	Z	1,00	

Perdite di carico localizzate per $\Sigma \xi = 1 \div 15$ (temperatura acqua = 80°C)

		V = Vel	bcità, m/s	9	Σξ = so	mmatoria	coefficier	ti perdite	di carico	localizzate	e, adimen	sionale	Z:	perdite d	di carico la	ocalizzate	mm c	a.
v	Σξ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Σξ	v
1,00	z	50	99	149	198	248	297	347	396	446	495	545	594	644	693	743	z	1,00
1,05	z	55	109	164	218	273	328	382	437	491	546	601	655	710	764	819	z	1,05
1,10	Z	60	120	180	240	300	360	419	479	539	599	659	719	779	839	899	Z	1,10
1,15	Z	65	131	196	262	327	393	458	524	589	655	720	786	851	917	982	z	1,15
1,20	Z	71	143	214	285	357	428	499	571	642	713	784	856	927	998	1.070	z	1,20
1,25	2 Z	77	155	232	310	387	464	542	619	696	774	851	929	1.006	1.083	1.161	z	1,25
1,30	z	84	167	251	335	418	502	586	670	753	897	921	1.004	1.088	1.172	1.255	z	1,30
1,35	Z	90	181	271	361	451	542	632	722	812	903	993	1.083	1.173	1.264	1.354	Z	1,35
1,40	z	97	194	291	388	485	582	679	777	874	971	1.068	1.165	1.262	1.959	1.456	z	1,40
1,45	Z	104	208	912	417	521	625	729	833	937	1.041	1.145	1,250	1.354	1.458	1.562	Z	1,45
1,50	Z	111	223	334	446	567	669	780	891	1.003	1.114	1.226	1.337	1.449	1.560	1.671	z	1,50
1,55	Z	119	238	357	476	595	714	833	952	1.071	1.190	1.309	1.428	1.547	1.666	1.785	Z	1,55
1,60	Z	127	254	380	507	634	761	887	1.014	1.141	1,268	1.395	1.521	1,648	1.775	1.902	z	1,60
1,65	z	135	270	404	539	674	809	944	1.079	1.213	1.348	1.483	1.618	1.753	1.888	2.022	z	1,65
1,70	z	143	286	429	573	716	859	1.002	1.145	1.288	1,431	1.574	1.718	1.861	2.004	2.147	z	1,70
1,75	Z	152	303	455	607	758	910	1.062	7.213	1.365	1.517	1.668	1.820	1.972	2.123	2.275	Z	1,75
1,80	Z	160	321	481	642	802	963	1.123	1_284	1.444	1.605	1,765	1.926	2.086	2.246	2.407	z	1,80
1,85	z	169	339	508	678	847	1.017	1.186	1.356	1,525	1.695	1.864	2.034	2.203	2.373	2.542	z	1,85
1,90	Z	179	358	536	715	894	1.073	1.251	1.430	1.609	1.789	1.967	2.145	2.324	2.503	2.682	Z	1,90
1,95	Z	188	377	565	753	942	1.130	1.318	1.507	1,695	1,883	2.072	2,260	2.448	2.636	2.825	z	1,95
2,00	z	198	396	594	792	990	1.189	1.387	1.585	1.783	7.987	2.179	2.377	2575	2.773	2.971	Z	2,00
2,05	Z	208	416	624	833	1.041	1,249	1.457	1.665	1.873	2.081	2.289	2,498	2.706	2.914	3.122	z	2,05
2,10	Z	218	437	655	874	1.092	1.310	1.529	1.747	1.966	2.184	2.402	2.621	2.839	3.058	3.276	z	2,10
2,15	z	229	458	687	916	1.145	1,374	1.603	1.831	2.060	2.289	2.518	2.747	2.976	3.205	3.434	Z	2,15
2,20	Z	240	479	719	959	1.199	1,438	1.678	1.918	2.157	2.397	2.637	2.876	3.116	3.356	3.596	Z	2,20
2,25	Z	251	501	752	1.009	1.254	1.504	1,755	2006	2,256	2.507	2.758	3.009	3.259	3.510	9.761	z	2,25
2,30	Z	262	524	786	1.048	1.310	1.572	1.834	2.096	2.358	2.620	2.882	3.144	3.406	3.668	3.930	z	2,30
2,35	z	274	547	821	1.094	1.368	1,641	1.915	2.188	2,462	2.735	3.009	3.282	3.556	3.829	4.103	z	2,35
2,40	z	285	571	856	1.141	1.426	1,712	1.997	2.282	2,567	2.853	3.138	3.423	3,708	3.994	4.279	z	2,40
2,45	Z	297	595	892	1.189	1.486	1.784	2.081	2.378	2,675	2.973	3.270	3.567	3.865	4.162	4.459	Z	2,45
2,50	z	310	619	929	1.238	1.548	1.857	2.167	2.476	2.786	3.095	3,405	3.714	4.024	4.333	4.643	z	2,50
2,60	Z	335	670	1,004	1.339	1.674	2.009	2.344	2.678	3.013	3.348	3,683	4.017	4.352	4.687	5.022	Z	2,60
2,70	Z	361	722	1.083	1,444	1.805	2.166	2,527	2.888	3.249	3.610	3.971	4.332	4.693	5.055	5.416	z	2,70
2,80	Z	388	777	1.165	1,553	1.941	2.330	2,718	3.106	3.494	3.883	4.271	4.659	5.048	5.436	5,824	Z	2,80
2,90	I	417	833	1.250	1,666	2.083	2.499	2,916	9.332	3.749	4.165	4.582	4.998	5.415	5.831	6.248	z	2,90
3,00	z	446	891	1.337	1.783	2.229	2.674	3.120	3.566	4.012	4.457	4.903	5.349	5.794	6.240	6.686	Z	3,00
3,10	z	476	952	1.428	1.904	2.380	2.856	3.332	3.807	4,283	4.759	5,235	5.711	6.187	6.663	7.199	Z	3,10
3,20	Z	507	1.014	1.521	2.029	2.536	3.043	3,550	4.057	4.564	5.071	5,578	6.086	6.593	7.100	7.607	Z	3,20
3,30	Z	539	1.079	1.618	2.157	2.697	3.236	3.775	4.315	4.854	5.393	5.933	6.472	7.011	7.551	8.090	Z	3,30
3,40	Z	573	1.145	1.718	2.290	2.863	3.435	4.008	4.580	5.153	5.725	6.298	6.870	7.443	8.015	8.588	Z	3,40
3,50	Z	607	1,213	1.820	2.427	3.033	3.640	4.247	4.853	5.460	6.067	6.673	7.280	7.887	8.494	9.100	Z	3,50
3,60	Z	642	1.284	1.926	2.567	3.209	3.857	4,493	5.135	5.777	6,418	7.060	7.702	8.344	8.986	9.628	Z	3,60
3,70	Z	678	1,356	2.034	2.712	3.390	4.068	4.745	5.424	6,102	6.780	7.458	8.136	8.814	9,492	10.170	Z	3,70
3,80	Z	715	7.430	2,145	2.861	3.576	4.291	5.006	5.721	6.436	7.151	7,867	8.582	9.297	10.012	10.727	Z	3,80
3,90	Z	753	1,507	2.260	3.013	3.766	4.520	5.273	6.026	6.779	7.533	8.286	9.039	9.793	10.546	11.299	Z	3,90
4,00	Z	792	1,585	2.377	3.170	3.962	4.754	5,547	6.939	7.132	7.924	8.716	9.509	10.301	11.094	11.886	Z	4,00

8.3. DIMENSIONAMENTO CANALIZZAZIONI IMPIANTO DI CLIMATIZZAZIONE

Le perdite di carico sono perdite di pressione causate dalle resistenze che si oppongono al moto di un fluido. Conoscere il loro valore serve essenzialmente a:

- dimensionare i condotti che convogliano i fluidi;
- determinare le caratteristiche delle pompe e dei ventilatori, cioè dei mezzi che servono a mantenere in movimento i fluidi.

Le perdite di carico possono essere continue o localizzate:

- quelle continue si manifestano lungo i tratti lineari dei condotti;
- quelle localizzate si manifestano, invece, in corrispondenza dei pezzi speciali che fanno variare la direzione o la sezione di passaggio del fluido (ad es. riduzioni, derivazioni, raccordi, confluenze, valvole, filtri, ecc.).

8.3.1 PERDITE DI CARICO CONTINUE

Per ogni condotto circolare, le perdite di carico continue possono essere calcolate con la formula:

$$r = Fa \bullet \underline{1} \bullet \rho \bullet \underline{v^2}$$
D
2

dove:

r: perdita di carico continua unitaria, in Pa/m

Fa : fattore di attrito, adimensionale ρ · : massa volumica dell'aria, in Kg/m3

v : velocità media dell'aria, in m/s D : diametro interno del tubo, in m

Il fattore di attrito dipende dal regime di moto del fluido, e dalla rugosità dei condotti.

REGIME DI MOTO DEL FLUIDO

Può essere:

- laminare, quando le particelle del fluido hanno traiettorie ordinate e fra loro parallele (il moto è calmo e regolare);
- turbolento, quando le particelle del fluido si muovono in modo irregolare e variabile nel tempo

(il moto è disordinato e instabile);

- transitorio, quando il moto non è chiaramente né laminare, né turbolento.

Il regime di moto di un fluido è individuabile col numero di Reynolds:

$$Re = \underline{v \bullet D}$$

Re : numero di Reynolds, adimensionale v : velocità media del fluido, in m/s D = diametro interno del tubo, in m

 $v \cdot = viscosità cinematica del fluido, in m2/s$

RUGOSITA'

Per i condotti che convogliano aria si possono considerare le classi di rugosità sotto riportate:

Classi di rugosità per condotti che convogliano aria										
Materiale	Classe di rugosità	έ· (mm)								
Canali in PVC Canali in lamiera di alluminio	Molto lisci	0,03								
Canali in lamiera zincata Canali in acciaio inox	Lisci	0,09								
Canali con rivestimento interno in polietilene Condotti in cemento lisciato	Rugosi	0,90								
Tubi flessibili metallici Tubi flessibili non metallici Condotti in cemento non lisciati	Molto rugosi	3								

Dove $\dot{\epsilon}$ rappresenta il valore della rugosità assoluta dei condotti: cioè il valore medio delle loro irregolarità superficiali.

DETERMINAZIONE DEL FATTORE DI ATTRITO [Fa]

In regime laminare [Fa] è determinabile con la seguente formula:

$$Fa = \underline{64}$$
 Re

In regime turbolento è, invece, determinabile con la formula di Colebrook: formula che, però, richiede metodi di calcolo per approssimazioni successive assai complessi. Motivo per cui nella pratica si ricorre a formule più semplici. Quella di seguito proposta è di Altshul-Tsal:

$$Fa^* = 0.11 \bullet \left(\frac{\mathcal{E}}{D} + \frac{68}{RE}\right)^{0.25}$$

dove:

Ponendo nella:

$$r = Fa \bullet \underline{1} \bullet \rho \bullet \underline{v^2}$$

i valori di [Fa] sopra riportati, è dunque possibile ottenere formule che consentono di calcolare le perdite di carico nei condotti circolari che convogliano aria.

CONDOTTI RETTANGOLARI – DIAMETRI EQUIVALENTI

Le formule sopra considerate sono valide per condotti circolari. Tuttavia, la loro validità può essere

estesa anche ai condotti rettangolari.

Per ottenere ciò si deve trasformare la sezione rettangolare del canale in una sezione circolare

equivalente: cioè in una sezione che, con le stesse portate, dà le stesse perdite di carico. Una simile trasformazione è ottenibile con la formula di Huebscher:

$$De = 1.30 \bullet \left(\frac{(a \bullet b)^{0.625}}{(a \bullet b)^{0.250}} \right)$$

dove:

De = diametro di un canale circolare equivalente ad un canale rettangolare, mm a, b = lati della sezione rettangolare, mm

8.3.2 TABELLE E DIAGRAMMI PERDITE DI CARICO CONTINUE

Le formule viste in precedenza sono state utilizzate approntare tabelle e diagrammi atti a rendere praticabile il dimensionamento manuale delle tubazioni.

Detti tabelle e diagrammi, riportati all'interno della collana tecnica denominata "Quaderni Caleffi", sono stati utilizzati per il dimensionamento dei condotti del presente progetto, in base alla tipologia di canalizzazioni scelte per la distribuzione ed alle portate delle reti di progetto.

I diagrammi sono sviluppati in scala logaritmica con portate sulle ascisse e perdite di carico sulle ordinate. Fasci di rette fra loro perpendicolari rappresentano i diametri dei condotti e le velocità dell'aria.

I diagrammi utilizzati sono suddivisi in quattro gruppi in base alle classi di rugosità definite dalla tabella sopra indicata. Ogni gruppo è poi suddiviso in quattro sottogruppi in base alle temperature e alle quote sul livello del mare di seguito riportate:

- t = 20°C; H = 0 m slm
- il diagramma può considerarsi valido quando:
- la temperatura varia fra +5°C e +35°C;
- l'altitudine non supera i 500 m.
- t = 50°C; H = 0 m slm

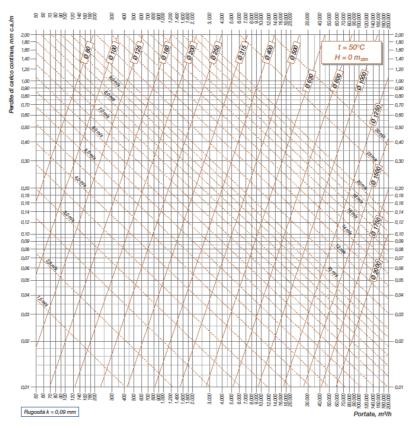
il diagramma può considerarsi valido quando:

- la temperatura varia fra +35°C e +65°C;
- l'altitudine non supera i 500 m.
- t = 20°C; H = 1.000 m slm

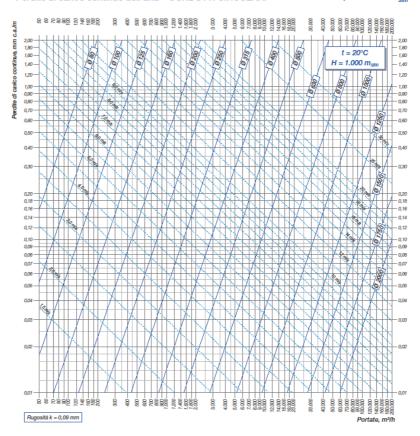
il diagramma può considerarsi valido quando:

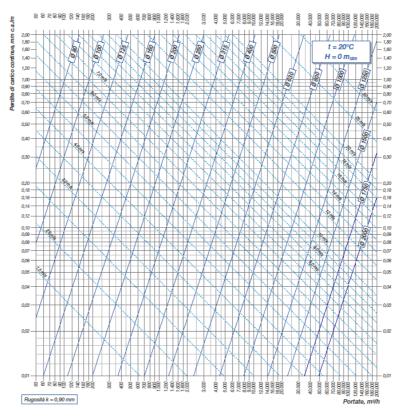
- la temperatura varia fra +5°C e +35°C;
- l'altitudine varia fra i 500 e i 1.500 m.
- t = 50°C; H = 1.000 m slm

il diagramma può considerarsi valido quando:

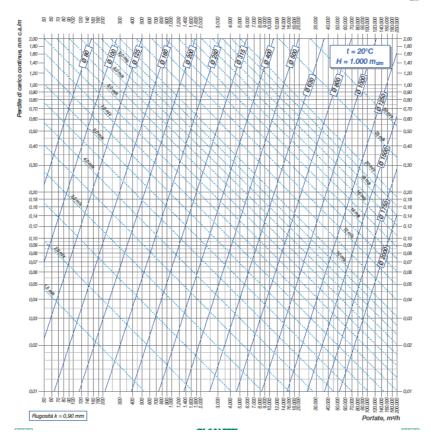

- la temperatura varia fra +35°C e +65°C;
- l'altitudine varia fra i 500 e i 1.500 m.

I casi considerati servono a tener conto del fatto che le perdite di carico continue dipendono in modo sensibile dalla temperatura dell'aria e dalla quota sul livello del mare: grandezze che agiscono sui valori di densità e viscosità dell'aria.

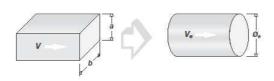

Le canalizzazioni di distribuzione aria sono state dimensionate considerando come massima perdita di carico per metro lineare il valore di circa 0,07 mm.c.a./m.



Perdite di carico continue dell'aria – CONDOTTI CIRCOLARI "LISCI" – t = 20°C, H = 1.000 $m_{\rm sim}$



Perdite di carico continue dell'aria – CONDOTTI CIRCOLARI "RUGOSI" – t = 20°C, H = 1.000 m_{slm}



Canali rettangolari: diametri equivalenti per la determinazione delle perdite di carico continue

8, 1	o = com	ensioni rei	rrangolo/d	quaorato,	o, mm Ø _e = diametro equivalente, mm							f = fattore correttivo velocità						
b	а	100	150	200	250	300	350	400	450	500	550	600	660	700	750	800	а	b
100	Øo	109	133	152	169	183	196	207	217	227	236	245	263	261	268	275	Øe	10
7.7	t	0,94	0,99	0,91	0,89	0,87	0,86	0,84	0.82	0,81	0,80	0,79	0,77	0,78	0,75	0.74	f	11005
50	Ø	133	164	189	210	229	245	260	274	287	299	310	321	331	341	350	Øo	1
	f	0,93	0,94	0,93	244	0,91	0,90	0,89	0,87	0,86	0,85	0,84	0,83	0,82	0,81	0,80	f	-
00	Øe	0.91	0.93	0.94	0.94	266	0.92	0.97	0.90	0.89	0.88	0.87	0.86	0.86	0.85	0.84	Øe	2
	0	169	210	244	273	299	322	343	363	381	398	414	429	443	457	470	1	-
50	Ø _e	0.89	0.92	0.94	0.94	0.94	0.93	0.93	0.92	0.91	0.90	0.90	0.89	0.88	0.87	0.87	Ø _e	2
100	1																	1833
00	Ø	183	229	266	299	328	364	378	400	420	439	457	474	490	506	520	Ø	3
70	f	0,87	0,91	0,93	0,94	0,94	0,94	0,93	0,93	0,92	0,92	0.91	0,90	0,90	0,89	0,89	f	188
50	Ø	195	245	286	322	354	383	409	433	455	477	496	515	533	550	567	Ø _e	3
-	f	0,86	0,90	0,92	0,93	0,94	0,94	0,94	0,93	0,99	0,93	0,92	0,92	0,91	0,91	0,90	f	_
00	Øc	207	260	305	343	378	409	437	464	488	511	533	553	573	592	609	Øo	4
ou	t	0,84	0,89	0,91	0,93	0,93	0,94	0,94	0,94	0,94	0,93	0,93	0,92	0,92	0,92	0,91	f.	-
50	Ø.	217	274	321	363	400	433	464	492	518	543	567	288	610	630	649	Ø	4
ou	f	0,82	0,87	0,90	0,92	0,93	0,93	0,94	0,94	0,94	0,94	0,93	0,93	0,93	0.92	0,92	· f	-44
mm:	Ø.	227	287	337	381	420	455	488	518	547	573	598	622	644	666	687	Ø _o	
00	F	0,81	0,86	0,89	0,91	0,92	0,93	0,94	0,94	0,94	0,94	0,94	0,93	0,03	0,93	0,93	f	5
re.	Ø _e	236	299	352	398	439	477	511	543	573	601	628	653	677	700	722	Øa	1
50	I F	0,80	0,85	0,88	0,90	0,92	0,93	0,93	0,94	0,94	0,94	0,94	0,94	0,94	0,93	0,03	f	Б
27 (410	Ø	245	310	365	414	457	496	633	567	598	628	656	683	708	732	755	Ø _o	Titos
00	f	0.79	0,84	0.87	0,90	0.91	0,92	0.93	0.93	0.94	0.94	0.94	0.94	0.94	0.94	0.93	F	6
	Ø,	253	321	378	429	474	515	553	589	622	653	683	711	737	763	787	Ø,	
50	7	0.77	0,83	0,86	0,89	0.90	0,92	0.92	0.93	0,93	0.94	0.94	0,94	0.94	0.94	0.94	4	6
255	Ø _o	261	331	391	443	490	533	573	610	644	677	708	737	765	792	818	Øe	
00	12/0	0.76	0.82	0.86	0.88	0.90	0,91	0.92	0.93	0.93	0.94	0.94	0.94	0.94	0.94	0.94	f	7
	0	268	341	402	457	506	550	592	630	666	700	732	763	792	820	847		-
50	Ø ₀		0.81								0.93				0.94	0.94	Øe	7
380.0	1	0,75		0,85	0,87	0,89	0,91	0,92	0,92	0,93	722	755	787	0,94				
00	Ø.	275	350	414	470	520		609	649	687					847	875	Ø	8
-	f	0,74	0,80	0,84	0,87	0,89	0,90	0,91	0,92	0,93	0,93	0,93	0,94	0,94	0,94	0,94	1	
50	Øe	282	359	424	482	534	582	626	668	706	743	778	811	842	872	901	Øe	8
	f	0,74	0,79	0,83	0,86	0,88	0,89	0,91	0.92	0,92	0,93	0,93	0,93	0,94	0,94	0,94	. 1	_
00	Ø _e	289	367	435	494	548	597	643	686	726	763	799	833	866	897	927	Ø.	9
u	f:	0,73	0,79	0,82	0,85	0,87	0,89	0,90	0,91	0,92	0,92	0,93	0,93	0,93	0,94	0,94	f	84
	Ø ₀	295	376	445	506	561	612	659	703	744	783	820	855	889	921	952	Ø	100
50	f	0,72	0,78	0,82	0.85	0.87	0,88	0,90	0,91	0,92	0.92	0,93	0,93	0,93	0,94	0,94	f	9
	Ø.	301	384	454	517	574	626	674	719	762	802	840	876	911	944	976	Ø.	
000	1	0.71	0.77	0.81	0.84	0.86	0.88	0.89	0,90	0.91	0.92	0.92	0.93	0,93	0,93	0,94	+	16
1000	Ø _e	313	399	473	538	598	652	703	751	795	838	878	916	953	988	1.022	Ø ₀	17/03:
100	<i>f</i>	0.70	0.76	0.80	0.83	0.85	0.87	0.88	0.89	0.90	0.91	0.92	0.92	0.93	0.93	0.93	f	11
7000	Ø.	324	413	490	558	620	677	731	780	827	872	914	954	993	1.030	1.066	Ø _a	1000
200	- F	0.69	0.74	0.79	0,82	0.84	0.86	0.87	0.89	0.90	0.90	0.91	0,92	0.92	0,93	0,93	f	12
11247	Ø	334	426	506	577	642	701	757	808	857	904	948	990	1.031	1,069	1,107	Ø _e	
900	1	0,67	0,73	0,77	0,80	0,83	0.85	0,86	0,88	0,89	0.90	0,90	0,91	0,92	0,92	0,92	f	13
	Ø _e	344	439	522	595	662	724	781	835	886	934	980	1.024	1.066	1.107	1.146	Ø _a	117/08
100	100	0.66	0.72	0.76	0.79	0.82	0.84	0.86	0.87	0.88	0.89	0.90	0.91	0.91	0.92	0.92	f	14
	0	353	452	536	612	681	745	806	860	913	963	1,011	1,057	1,100	1,143	1,183		-
00	Øu	0.65	0.71	0.75	0.79	0.81	0.83	0.85	0.86								Ø ₀	11
25	1									0,87	0,88	0.89	0,90	0,91	0,91	0,92	f	- 40
000	Ø _e	362	463	551	629	700	766	827	885	939	991	1.041	1.088	1.133	1.177	1.219	Øo	-11
	f	0,64	0,70	0,74	0,78	0,80	0,82	0,84	0,85	0,87	0,88	0,89	0,89	0,90	0,91	0,91	f	- /-
00	Øe	371	475	564	644	718	785	849	908	964	1.018	1.069	1.118	1.164	1.209	1.253	Ø _e	17
uu.	f	0,64	0,69	0,74	0,77	0,79	0,81	0,83	0,85	0,86	0,87	0,88	0,89	0,89	0,90	0,91	1	4.1
00	Øo	379	485	577	660	735	804	869	930	988	1.043	1.096	1.146	1.195	1.241	1.286	Øe	18
UU	· F	0,63	0,69	0,73	0,76	0,79	0,81	0,82	0,84	0,85	0,86	0,87	0,88	0,89	0,90	0,90	f	18
	Ø _e	387	496	590	674	751	823	889	952	1.012	1,068	1,122	1,174	1.224	1,271	1,318	Ø.	Town
900	f	0.62	0.68	0.72	0.75	0.78	0.80	0.82	0.83	0.85	0.86	0.87	0.88	0.88	0.89	0.90	f	18
	Ø.	395	506	602	688	767	840	908	973	1.034	1.092	1.147	1.200	1.252	1.301	1.348	Ø.	
000	f	0.61	0,67	0.71	0.74	0.77	0.79	0.8	0.83	0.84	0.85	0.86	0.87	0.88	0.89	0.89	t	20
OU.	Ø _e	410	525	625	715	797	874	945	1.013	1,076	1.137	1,195	1,251	1,305	1,356	1,406	Ø _e	
200		0.60	0,66	0.70	0.73	0.76	0.78	0.80	0.81	0.83	0.84	0.85	0.86	0,87	0.88			22

Canali rettangolari: diametri equivalenti per la determinazione delle perdite di carico continue

a, l	b = dim	ensioni rei	ttangolo/d	guabrato,	mm		Ø,	= diamet	ro equiva	lente, mn	1			f = fatt	ore corre	ttivo velo	cità	
b	а	850	900	960	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2200	а	b
860	Ø ₀	929 0.94	956 0.94	982 0.94	1.007	1.055	1.100	1,143	1.183	1,222	1.259	1,295	1,329	1,362	1.394	1,455	Ø _e	850
900	Ø _e f	956 0,94	0,94	1.011	1,037	1,086	1.133	1,177	1.220	1.260	1,298	1.335	1.371 0,97	1,405	1,438	1,501	Ø ₀	900
950	Ø _e f	982 0,94	1.011 0,94	1.039 0,94	1.065	1.117	1.165	1.211	1.255	1,297	1,336	1.375	1,412	1,447	1,482	1,547	Øe f	950
1000	Ø _e	1.007	1.037	1.065	1.093	1.146	1.196	1,244	1,289	1,332	1,373	1,413	1.451	1,488	1,523	1,591	Ø _a	100
1100	Ø _e f	1.055	1.086	1.117	1.146	1.202 0.94	1.256	1,306	1.354 0.94	1,400	1,444	1,486	1.527 0.92	1,566 0,92	1,604	1,676	Ø _e	110
1200	Ø _o	1.100 0,93	1.133	1,165	1.196	1.256 0,94	1,312 0,94	1,365	1.416	1,464	1.511	1,555	1,598	1,640	1.680	1,756	Ø _o	120
1300	Ø ₀	1.143	1.177	1.211	1.244	1.306	1.366	0.94	1,476	1.526	1,574	1.621	1,667	1,710	1,753	1.833	Ø ₀	130
1400	Ø _e f	1.183	0,93	1.255 0,93	1.289	1.354 0,94	1.416	1,475	1.530 0,94	1,584	1.635 0.94	1,684	1.732 0,93	1,778	1,822	1,906	Ø _o	140
1500	Ø ₀ f	1.222 0,92	1.260	1.297 0,93	1.332	1.400 0,93	1.464 0.94	1.526 0.94	1.584 0,94	1.640	1.693	1.745	1.794 0.94	1,842	1,889	1,977	Ø _e f	150
1600	Ø _e	1.259 0.92	1.298	1.336	1.373	1.444	0,93	1.574 0.94	1,635	1.693	1.749	1.803	1,854	1.904	1,952	2.044	Ø _e	160
700	Øa f	1.295 0.91	1.335 0.92	1.375	1.413	1.486	1.555 0.93	1.621 0.93	1.684 0.94	1.745 0.94	1.803	1.858	1.912	1,964	2.014	2,110	Øo f	170
1800	Ø _e	1.329	1.371	1,412	1.451	1.527 0.92	1.598 0.93	1.667	1.732	1.794	1.854	1.912	1.968	2.021	2.073	2.173	Ø _a	180
900	Ø _e	1.362	1.405	1.447 0.91	1.488	1,566	0.93	1.710	1.778	1.842	1.904	1.964	0.94	2.077 0.94	2.131 0.94	2.233	Ø _e	190
000	Ø ₀	1.394	1,438	1.482	1.523	1.604	1.680	1.753	1.822	1,889	1.962	2.014	2.073	2.131	2.186	2,292	Ø _e	200
200	Ø _o	1,455	1.501	1.547 0.90	1.591	1.676	1.756	1.833	1.906	1,977	2.044 0.93	2.110 0.93	2.173	2.233 0.94	2.292 0.94	2.405 0.94	Ø ₀	220

8.3.3 PERDITE DI CARICO LOCALIZZATE

Le perdite di carico localizzate sono dovute alla presenza di pezzi speciali che fanno variare la direzione o la sezione di passaggio del fluido. Possono essere calcolate con uno dei seguenti metodi:

- metodo diretto, utilizza coefficienti che dipendono dalla forma e dalle dimensioni dei pezzi speciali;
- metodo delle portate nominali, ricorre, per ogni pezzo speciale, al valore della sua portata nominale: cioè alla portata che corrisponde ad una perdita di pressione unitaria predefinita (ad esempio 1 bar);
- metodo delle lunghezze equivalenti, sostituisce, ad ogni pezzo speciale, un tratto di tubo lineare in grado di dare le stesse perdite di carico.

In genere, per il dimensionamento dei condotti e dei ventilatori si ricorre al metodo diretto, in quanto è sufficientemente accurato ed è facile da utilizzare.

Con tale metodo le perdite di carico localizzate si possono calcolare con la formula:

$$r = \xi \bullet \rho \bullet \underline{v^2}$$

dove:

z = perdita di carico localizzata, in Pa

 ξ • = coefficiente di perdita localizzata, adimensionale (determinato con prove di laboratorio)

 ρ = massa volumica dell'aria, in kg/m3

v = velocità media dell'aria, in m/s

Esprimendo le perdite di carico localizzate in unità di misura pratiche (cioè in mm c.a.) la precedente diventa:

$$z = \xi \bullet \rho \bullet \underline{v^2}$$

$$2 \bullet 9.81$$

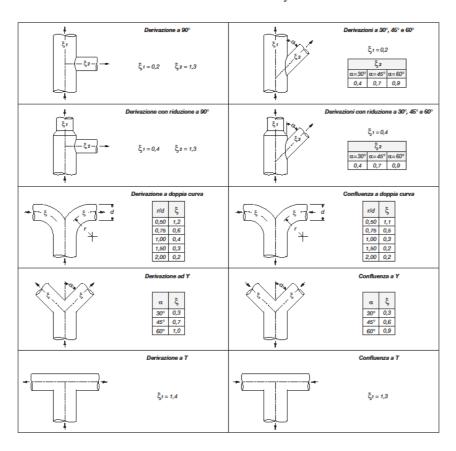
8.3.4 TABELLE PERDITE DI CARICO LOCALIZZATE

Per determinare il valore delle perdite di carico localizzate, sono stati utilizzati i seguenti tipi di tabelle, riportati all'interno della collana tecnica denominata "Ouaderni Caleffi".

TABELLE COEFFICIENTI PERDITE DI CARICO LOCALIZZATE [ξ ·]

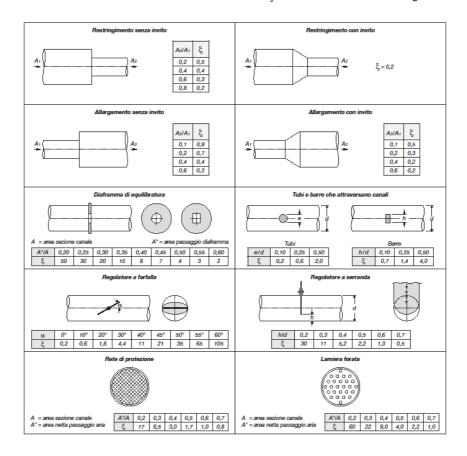
Riportano i valori dei coefficienti $[\xi]$ relativi ai raccordi e componenti più utilizzati negli impianti Aeraulici

Canali circolari - valori indicativi dei coefficienti ξ - imbocchi e sbocchi

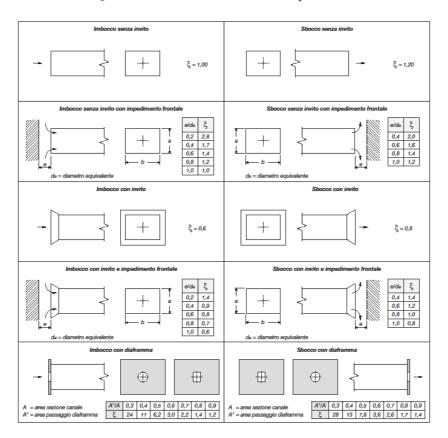


Canali circolari - valori indicativi dei coefficienti $\,\xi\,$ - curve

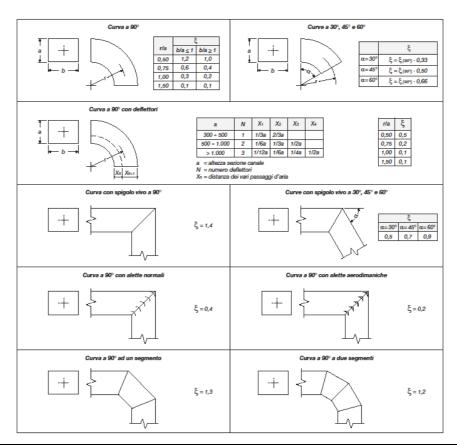
Curva a 90°		Curve a 30°, 45° e 60°
	rid ξ 0,50 0,9 0,75 0,5 1,00 0,4 1,50 0,3 2,00 0,2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Curva a settori a 90°		Curve a settori a 30°, 45° e 60°
	rid	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Curva con spigolo vivo a 90°		Curve con spigolo vivo a 30°, 45° e 60°
	ξ = 1,4	ξ α= 30° (α= 45° α= 60° 0,4 0,7 1,0
Curva ad un segmento a 90°		Curva a due segmenti a 90°
	ξ = 1,3	ξ = 1,2
Curva doppia µ— ễ—		Curva e controcurva
	ℓ/d	Ud



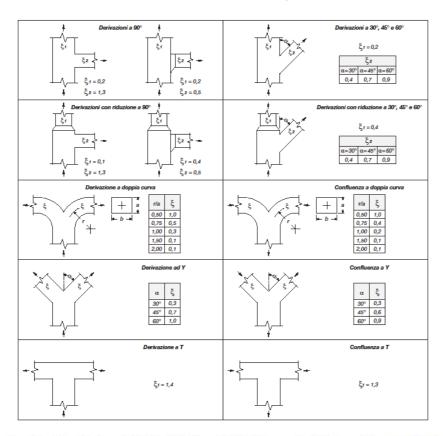
Canali circolari - valori indicativi dei coefficienti $\,\xi\,$ - derivazioni e confluenze



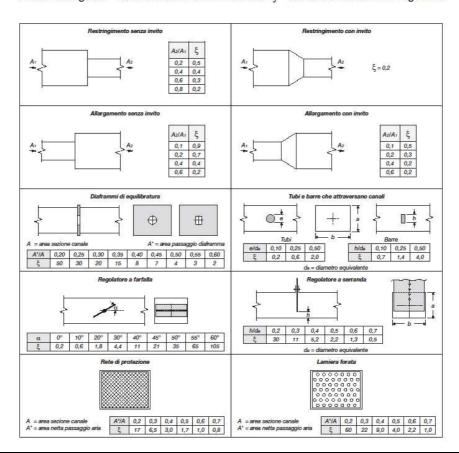
Canali circolari - valori indicativi dei coefficienti ξ - variazioni di sezione e regolatori



Canali rettangolari - valori indicativi dei coefficienti ξ - imbocchi e sbocchi



Canali rettangolari - valori indicativi dei coefficienti $\,\xi\,$ - curve



Canali rettangolari - valori indicativi dei coefficienti ξ - derivazioni e confluenze

Canali rettangolari - valori indicativi dei coefficienti & - variazioni di sezione e regolatori

TABELLE PERDITE DI CARICO LOCALIZZATE [z]

Sono tabelle che consentono di determinare le perdite di carico localizzate [z] noti i coefficienti [ξ] e le velocità dell'aria [v] .

Per alcuni componenti (quali ad esempio: gli specifici diffusori, le griglie, le serrande, ecc) sono state tuttavia derivate le perdite localizzate direttamente dalle specifiche tecniche dei Costruttori.

Perdite di carico localizzate per $\Sigma \xi = 1 \div 10$ (temperatura aria = 20°C - H = 0 m_{stm})

		v = valocità,	m/s	Σξ =	sommatoria	coefficienti per	dite localizzate	, adimensionale	Z =)	perdite di caric	o localizzate	, mm c.	a
v	Σξ	1	2	3	4	6	6	7	8	9	10	Σξ	v
1,0	z	0,06	0,12	0,18	0,25	0,31	0,37	0,43	0,49	0,55	0,61	z	1,0
1,5	Z	0,14	0,28	0,41	0,55	0,69	0,83	0,97	1,10	1,24	1,38	z	1,5
2,0	Z	0,25	0,49	0,74	0,98	1,23	1,47	1,72	1,96	2,21	2,45	z	2,0
2,5	Z	0,38	0,77	1,15	1,53	1,92	2,30	2,68	3,07	3,45	3,83	z	2,5
3,0	Z	0,55	1,10	1,66	2,21	2,76	3,31	3,86	4,41	4,97	5,52	z	3,0
3,2	Z	0,63	1,26	1,88	2,51	3,14	3,77	4,40	5,02	5,65	6,28	z	3,2
3,4	Z	0,71	1,42	2,13	2,84	3,54	4,25	4,96	5,67	6,38	7,09	z	3,4
3,6	Z	0,79	1,59	2,38	3,18	3,97	4,77	5,56	6,36	7,15	7,95	Z	3,6
3,8	z	0,89	1,77	2,66	3,54	4,43	5,31	6,20	7,08	7,97	8,85	z	3,8
4,0	Z	0,98	1,96	2,94	3,92	4,91	5,89	6,87	7,85	8,83	9,81	z	4,0
4,2	z	1,08	2,16	3,24	4,33	5,41	6,49	7,57	8,65	9,73	10,8	z	4,2
4,4	Z	1,19	2,37	3,56	4,75	5,94	7,12	8,31	9,50	10,7	11,9	z	4,4
4,6	Z	1,30	2,59	3,89	5,19	6,49	7,78	9,08	10,4	11,7	13,0	z	4,6
4,8	Z	1,41	2,83	4,24	5,65	7,06	8,48	9,89	11,3	12,7	14,1	z	4,8
5,0	Z	1,53	3,07	4,60	6,13	7,66	9,20	10,7	12,3	13,8	15,3	z	5,0
5,2	Z	1,66	3,32	4,97	6,63	8,29	9,95	11,6	13,3	14,9	16,6	Z	5,2
5,4	z	1,79	3,58	5,36	7,15	8,94	10,7	12,5	14,3	16,1	17,9	z	5,4
5,6	Z	1,92	3,85	5,77	7,69	9,61	11,5	13,5	15,4	17,3	19,2	z	5,6
5,8	Z	2,06	4,13	6,19	8,25	10,3	12,4	14,4	16,5	18,6	20,6	z	5,8
6,0	Z	2,21	4,41	6,62	8,83	11,0	13,2	15,5	17,7	19,9	22,1	z	6,0
6,2	Z	2,36	4,71	7,07	9,43	11,8	14,1	16,5	18,9	21,2	23,6	Z	6,2
6,4	z	2,51	5,02	7,53	10,0	12,6	15,1	17,6	20,1	22,6	25,1	z	6,4
6,6	Z	2,67	5,34	8,01	10,7	13,4	16,0	18,7	21,4	24,0	26,7	z	6,6
6,8	Z	2,84	5,67	8,51	11,3	14,2	17.0	19,8	22,7	25,5	28,4	Z	6,8
7,0	Z	3,00	6,01	9,01	12,0	15,0	18,0	21,0	24,0	27,0	30,0	z	7,0
7,2	Z	3,18	6,36	9,54	12,7	15,9	19,1	22,3	25,4	28,6	31,8	z	7,2
7,4	Z	3,36	6,72	10,1	13,4	16,8	20,1	23,5	26,9	30,2	33,6	z	7,4
7,6	Z	3,54	7,08	10,6	14,2	17,7	21,2	24,8	28,3	31,9	35,4	z	7,6
7,8	Z	3,73	7,46	11,2	14,9	18,7	22,4	26,1	29,8	33,6	37,3	z	7,8
8,0	Z	3,92	7,85	11,8	15,7	19,6	23,5	27,5	31,4	35,3	39,2	Z	8,0
8,5	Z	4,43	8,86	13,3	17,7	22,2	26,6	31,0	35,4	39,9	44,3	z	8,5
9,0	Z	4,97	9,93	14,9	19,9	24,8	29,8	34,8	39,7	44,7	49,7	z	9,0
9,5	Z	5,53	11,1	16,6	22,1	27,7	33,2	38,7	44,3	49,8	55,3	z	9,5
10,0	Z	6,13	12,3	18,4	24,5	30,7	36,8	42,9	49,1	55,2	61,3	Z	10,0
10,5	Z	6,76	13,5	20,3	27,0	33,8	40,6	47,3	54,1	60,8	67,6	Z	10,5
11,0	Z	7,42	14,8	22,3	29,7	37,1	44,5	51,9	59,4	66,8	74,2	z	11,0
11,5	2	8,11	16,2	24,3	32,4	40,5	48,7	56,8	64,9	73,0	81,1	Z	11,5
12,0	Z	8,83	17,7	26,5	35,3	44,1	53,0	61,8	70,6	79,5	88,3	Z	12,0
12,5	Z	9,58	19,2	28,7	38,3	47,9	57,5	67,1	76,6	86,2	95,8	z	12,5
13,0	Z	10,4	20,7	31,1	41,4	51,8	62,2	72,5	82,9	93,3	104	z	13,0
13,5	Z	11,2	22,3	33,5	44,7	55,9	67,0	78,2	89,4	101	112	z	13,5
14,0	Z	12,0	24,0	36,1	48,1	60,1	72,1	84,1	96,1	108	120	z	14,0
14,5	Z	12,9	25,8	38,7	51,6	64,5	77,3	90,2	103	116	129	Z	14,5
15,0	Z	13,8	27,6	41,4	55,2	69,0	82,8	96,6	110	124	138	Z	15,0
15,5	Z	14,7	29,5	44,2	58,9	73,7	88,4	103	118	133	147	z	15,5
16,0	Z	15,7	31,4	47,1	62,8	78,5	94,2	110	126	141	157	Z	16,0

9. IMPIANTO SCARICO

9.1. RETE DI SCARICO ACQUE USATE DI PROCESSO

Per lo smaltimento delle acque di processo di scarico, relativo alle pompe di calore, saranno previste condotte di scarico orizzontali che dalla centrale termica per gravità scaricherà nella roggia con una pendenza di 0.1%

Collettori di scarico esterni ai fabbricati (fognature)

La seguente tabella serve per dimensionare le diramazioni di scarico di acque usate installate esternamente ai fabbricati sia civili che industriali. I quantitativi massimi di acque usate ammessi per i vari diametri e le diverse pendenze corrispondono ad un'altezza di riempimento h/d=0.8~(80%).

	Pendenza in %											
h d	1,0%	1,5%	2,0%	2,5%	3,0%	4,0%	5,0%					
h/d=0,8												
Ø mm		Portata Q in I/sec.										
69/75*	1,8	2,3	2,6	3,0	3,2	3,8	4,2					
83/90*	2,8	3,4	4,0	4,5	4,9	5,6	6,3					
101/110	5,0	6,2	7,2	8,0	8,9	10,2	11,5					
115/125	7,4	9,0	10,5	11,7	12,9	14,9	16,7					
147/160	15,0	18,0	21,0	23,5	26,0	30,0	33,0					
187/200	27,0	33,1	38,1	42,8	47,0	54,3	60,8					
234/250	49,0	60,1	69,5	77,7	85,2	98,4	110,1					
295/315	90,6	111,1	128,4	143,6	157,4	181,8	203,3					

^{*} solo per scarichi senza WC.